Article
More like this
How did Richard Feynman, a young boy with an unremarkable academic record, become a Nobel Prize-winning physicist? Can modern psychology help us understand the makings of genius? Explore the origins of brilliance and the best means of cultivating it through the Genetic Studies of Genius led by Lewis Terman. Discover the lucky combination of fortunate circumstances, grit and determination, and limitless curiosity that can pave the way for exceptional achievement.
Mathematics is not just about numbers and equations, it has a fascinating role in various fields such as sports, space exploration, and movie special effects. This book, written in an engaging conversational style, takes readers on a journey through the wonders of math in our daily lives. With captivating illustrations, including stills from Terminator 2 and virtual reality images of the universe after the Big Bang, this book is sure to inspire students to explore the fascinating world of mathematics beyond the classroom. Recommended for students of all fields of study, this book showcases the relevance of mathematics in various areas of interest, including movie special effects, sports, and space exploration. Professionals in computer technologies, ocean floor mapping, and virtual reality will also find this book to be a valuable resource. Moreover, anyone who is curious about the role of math in our daily lives, from the Big Bang to modern technology, will find this book to be an intellectually stimulating read.
Did you know that the origin of the word 'algorithm' dates back to the late 17th century? It comes from the name of a Persian mathematician, Muhammad ibn Musa al-Khwarizmi, who was born around 780 AD. His innovative contributions to mathematics, astronomy, geography, and cartography revolutionized the field. He wrote an influential book called “On the calculation with Hindu Numerals" which introduced Hindu-Arabic numerals to the West, the system we use today. His books showed how complex problems could be broken down into simpler parts and solved, which eventually gave birth to the computer age. Today, algorithms are everywhere, helping us get from A to B, driving internet searches, making recommendations of things for us to buy, watch or share, and even predicting how we vote or who we fall in love with. Learning about algorithms can give you a better understanding of how the world around you works, and it can even inspire you to create something new that could change the world.
Are you a problem solver? Do you enjoy using logic and reasoning to find solutions? If so, a career in mathematics may be the perfect fit for you! Mathematics is a fascinating field that involves the study of numbers, shapes, and patterns. It is a subject that is used in almost every aspect of our daily lives, from calculating the tip on a restaurant bill to designing the latest smartphone app. As a mathematician, you will use your skills to solve complex problems and develop new theories. You may work in a variety of fields, including finance, engineering, science, and technology. For example, you could use mathematics to design new algorithms for search engines, develop statistical models to predict the weather, or analyze financial data to make investment decisions. Typical duties of a mathematician include conducting research, analyzing data, developing mathematical models, and presenting findings to others. There are many areas of specialization within the field of mathematics, including algebra, geometry, calculus, and statistics. You may also work in related fields such as computer science, physics, or economics. To become a mathematician, you will typically need a bachelor's degree in mathematics or a related field. Popular undergraduate programs and majors include mathematics, statistics, and computer science. You may also choose to pursue a graduate degree in mathematics or a related field to further specialize in your area of interest. Helpful personal attributes for a career in mathematics include strong analytical skills, attention to detail, and the ability to think logically and creatively. You should also be comfortable working with numbers and have good problem-solving skills. Job prospects for mathematicians are excellent, with a projected growth rate of 30% over the next decade. There are many potential employers for mathematicians, including government agencies, private corporations, and research institutions. Some notable employers include NASA, Google, and the National Security Agency. In conclusion, a career in mathematics is an exciting and rewarding path for those who enjoy problem-solving and critical thinking. With a strong educational background and the right personal attributes, you can pursue a fulfilling career in this fascinating field. So why not explore the world of mathematics and see where it takes you?
Effective altruism has been a cornerstone in solving global problems, relying heavily on quantitative metrics. But what about the ideas, experiences, and problems that resist quantification? Let's explore how we can create a more nuanced and inclusive framework for giving that incorporates unique passions.
If you're looking for a field of study that combines the beauty of mathematics with practical applications in the real world, Applied Mathematics may be just the thing for you! Applied Mathematics is the study of mathematical methods that can be used to solve problems in various fields, including science, engineering, economics, and finance. It's all about taking abstract mathematical concepts and applying them to real-world situations. One of the most exciting aspects of Applied Mathematics is its versatility. You can use it to solve problems in a wide range of fields, from predicting the weather to designing aircraft. For example, Applied Mathematics is used to study the spread of diseases, to optimize traffic flow, and to develop new materials for use in manufacturing. In recent years, Applied Mathematics has seen some fascinating research and innovations. For example, mathematicians have developed new algorithms for machine learning, which are used in everything from self-driving cars to medical diagnosis. Other researchers have used mathematical models to study the behavior of complex systems, such as the stock market or the human brain. If you're interested in studying Applied Mathematics at the undergraduate level, you can expect to take courses in calculus, linear algebra, differential equations, and probability theory. You may also have the opportunity to specialize in areas such as numerical analysis, optimization, or mathematical modeling. With a degree in Applied Mathematics, you'll be well-prepared for a variety of careers. You could work as a data analyst, a financial analyst, or a software developer. You could also work in fields such as aerospace engineering, biotechnology, or telecommunications. Some notable employers in these fields include NASA, Google, and the World Bank. To succeed in Applied Mathematics, you'll need to have a strong foundation in mathematics and an interest in applying mathematical concepts to real-world problems. You'll also need to be comfortable working with data and be able to think critically and creatively. If you're up for the challenge, Applied Mathematics could be an exciting and rewarding field of study for you!
The World Wide Web is an integral part of our daily lives, but do you know what it really is? It's not the same as the internet, which is simply a way for computers to share information. The World Wide Web is like a virtual city, where we communicate with each other in web languages, with browsers acting as our translators. What makes the Web so special is that it's organized like our brains, with interconnected thoughts and ideas, thanks to hyperlinks. By exploring the World Wide Web, you can learn more about web languages like HTML and JavaScript, and gain valuable skills in communication, research, and problem-solving. Plus, you'll be part of a global community that connects minds across all boundaries. So why not dive in and explore this fascinating virtual city?
Cornell researchers have made a breakthrough in fault-tolerant quantum computing by constructing a model with non-Abelian anyons, exotic particles that can protect bits of quantum information by storing them non-locally. This discovery opens up new opportunities for quantum computation, and the researchers have even provided specific instructions for executing the experiment on devices available today. Collaborating with Google Quantum AI, they have successfully proved the theory with an experiment, making non-Abelian anyons a reality. This breakthrough could pave the way for a new era in quantum computing.
Have you ever watched a spy movie and wondered how secret messages are sent and received? Or how governments and financial institutions protect their sensitive information from hackers? If so, a career in Cryptography might just be for you! Cryptography is the science of writing and solving codes to protect information. It's a fascinating field that combines mathematics, computer science, and information security. Cryptographers develop and implement encryption algorithms to keep sensitive information private and secure. One of the most appealing aspects of a career in Cryptography is the opportunity to work on cutting-edge technology and contribute to solving some of the world's most pressing security problems. Cryptographers are in high demand in both the public and private sectors, from government agencies to banks and tech companies. For example, in the 1940s during World War II, cryptographers played a crucial role in deciphering encrypted messages sent by the Germans. Alan Turing, a renowned mathematician, and cryptographer was instrumental in breaking the Enigma code and is widely credited with helping end the war. In modern times, cryptographers are essential in securing online transactions, protecting personal data, and developing secure communication networks. Typical duties of a Cryptographer may include developing encryption algorithms and security protocols, analyzing security risks and vulnerabilities, testing and auditing security systems, and collaborating with other security professionals to ensure the protection of sensitive information. There are many areas of specialization within Cryptography, including software security, network security, information security, and data encryption. Cryptographers can work in a wide range of industries, including government agencies, financial institutions, technology companies, and research institutions. To become a Cryptographer, you typically need a degree in computer science, mathematics, or a related field. Some popular undergraduate programs and majors include Computer Science, Cybersecurity, Information Technology, Mathematics, and Electrical Engineering. Helpful personal attributes for a career in Cryptography include strong analytical skills, attention to detail, and the ability to think creatively and outside the box. Cryptographers must be able to work well under pressure and be comfortable working with complex mathematical concepts and computer programming languages. The job prospects for Cryptographers are excellent, with a projected growth rate of 18% from 2019 to 2029, much faster than the average for all occupations. Many government agencies, financial institutions, and tech companies around the world offer exciting and rewarding careers in Cryptography. Some notable employers include the National Security Agency (NSA), Central Intelligence Agency (CIA), Google, Microsoft, and Amazon.
Have you ever wondered what it would be like to predict the weather? To be the one who knows when to pack an umbrella or when to wear sunscreen? If so, a career in meteorology might be perfect for you! Meteorology is the study of the atmosphere and the weather that occurs within it. This field is fascinating and ever-changing, with new discoveries and advancements being made all the time. Meteorologists use science and technology to analyze data and make predictions about weather patterns, climate change, and severe weather events. As a meteorologist, you'll have the opportunity to work in a variety of different areas. Some meteorologists specialize in forecasting weather for television or radio stations, while others work for government agencies, such as the National Weather Service. You could also work for private companies that require weather predictions, such as airlines or energy companies. To become a meteorologist, you'll typically need a bachelor's degree in meteorology, atmospheric science, or a related field. Popular undergraduate programs include Atmospheric Sciences, Environmental Science, and Physics. It's also important to have a strong background in math and computer science. Helpful personal attributes for a career in meteorology include strong analytical skills, attention to detail, and the ability to work well under pressure. You'll need to be able to communicate complex information in a clear and concise manner, as well as work as part of a team. Job prospects for meteorologists are strong, with opportunities available in both the public and private sectors around the world. Notable employers include the National Oceanic and Atmospheric Administration (NOAA), the European Centre for Medium-Range Weather Forecasts (ECMWF), and the Australian Bureau of Meteorology. In conclusion, a career in meteorology is exciting, challenging, and rewarding. With a passion for science and a desire to make a difference, you could be the next meteorologist to predict the next big weather event. So, if you're interested in the weather and want to make a difference in the world, consider a career in meteorology!
Have you ever thought about why we use the number system we do? Did you know that there are other systems out there, like base 12, that could make math easier and more enjoyable? In a dozenal world, numbers are represented using 12 symbols instead of 10, which makes it easier to divide numbers into whole numbers. This makes it easier to use currency and measure things like fractions. Plus, some times tables work more nicely in base 12. It might seem confusing to switch to a new system, but civilizations have switched between bases throughout history. By exploring different number systems, you can expand your understanding of math and challenge yourself to think outside the box. Who knows, maybe you'll discover a new way of thinking about numbers that will make math more enjoyable for you!
Ready to explore the mind-bending world of quantum physics but don't know where to start? Look no further than Quantum Physics For Dummies! This comprehensive guide breaks down complex concepts into easy-to-understand language, with examples and applications that will leave you feeling like a quantum physics pro. From the Schrodinger Equation to Vector Notation, this book covers all the essentials and prepares you for graduate or professional exams. Get ready to dive into the fascinating world of quantum physics and unlock the secrets of the universe! Recommended for students, scientists, and anyone curious about the mysteries of the universe, Quantum Physics For Dummies is an essential guide to understanding the fundamentals of quantum physics. Whether you're studying physics, engineering, or any other science-related field, this book provides a solid foundation for understanding the principles of quantum mechanics. It's also a great resource for professionals looking to refresh their knowledge or for anyone interested in exploring the cutting-edge of scientific research. With clear explanations and helpful examples, Quantum Physics For Dummies is the perfect introduction to this fascinating field.
Ever wonder how computers turn a blurry image into a crisp one? New research from MIT and UC Berkeley reveals how neural networks can de-blur fuzzy images with a "generative" model algorithm. But how accurate are the results? The researchers developed a way to represent uncertainty in a way that is meaningful for non-experts, offering a range of images with precise bounds and probabilistic guarantees. This milestone not only has implications for image restoration, but also for fields such as medical imaging and law enforcement.
Get ready to be inspired by the fascinating world of ants! Researchers, led by Professor L. Mahadevan, have unlocked the secret to how ants work together to perform complex tasks with simple parameters. By observing and mimicking the behavior of black carpenter ants, the team has developed robots, nicknamed RAnts, that can cooperate and complete tasks using simple rules. This groundbreaking research has the potential to solve other complex problems and revolutionize the way we think about teamwork and cooperation.
Are you fascinated by technology and the limitless possibilities it holds? Do you have a passion for problem-solving and a desire to make a real impact on the world? Look no further than the exciting field of Artificial Intelligence (AI). AI is the study of intelligent agents, which are computer programs that can perform tasks that typically require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. From self-driving cars to virtual personal assistants, AI is transforming the way we live and work. At the forefront of AI research are innovators like Andrew Ng, who co-founded Google Brain and Coursera, and Yoshua Bengio, who won the prestigious Turing Award for his work in deep learning. These academic giants have paved the way for groundbreaking developments in AI, such as natural language processing and computer vision. As an undergraduate in AI, you'll delve into a range of fascinating modules, such as machine learning, robotics, and data mining. You'll also have the opportunity to specialize in areas such as computer vision, natural language processing, and game AI. Imagine creating a robot that can navigate a maze or designing a system that can translate languages in real-time. But what about the future? With a degree in AI, you'll be well-equipped for a range of exciting careers, including data scientist, machine learning engineer, and AI researcher. You could work for tech giants like Google, Facebook, and Amazon, or for cutting-edge startups like OpenAI and DeepMind. And it's not just tech companies that need AI experts - industries like healthcare, finance, and transportation are all looking for talented AI professionals. To succeed in AI, you'll need a strong foundation in mathematics, computer science, and programming. But equally important are skills like critical thinking, problem-solving, and creativity. If you're passionate about technology and driven to make a difference, a degree in AI could be the perfect fit for you.
Are you fascinated by the idea of machines that can think and learn like humans? Do you want to be at the forefront of technological innovation? Then studying Artificial Intelligence & Machine Learning might be your calling! Artificial Intelligence & Machine Learning is a field of study that focuses on creating intelligent machines that can perform tasks that typically require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. It involves a combination of computer science, mathematics, and statistics. One of the most exciting aspects of this field is the potential for real-life applications. For example, self-driving cars, virtual personal assistants like Siri and Alexa, and facial recognition technology are all examples of AI and machine learning in action. The field of AI & Machine Learning is constantly evolving, with exciting research and innovations happening all the time. Some notable academic figures in the field include Geoffrey Hinton, who developed deep learning algorithms, and Andrew Ng, who co-founded Google Brain and Coursera. At the undergraduate level, typical majors and modules might include programming, data analysis, and machine learning algorithms. There are also many potential areas of further specialisation, such as natural language processing, computer vision, and robotics. If you pursue a degree in AI & Machine Learning, you'll be well-equipped for a range of exciting future jobs and roles. Some key industries for prospective employment include healthcare, finance, and transportation. Companies like Google, Amazon, and Microsoft are all actively hiring for AI and machine learning roles. To succeed in this field, you'll need a strong foundation in math and computer science, as well as an interest in problem-solving and a willingness to keep up with the latest developments in the field. If you're interested in creating cutting-edge technology that has the potential to change the world, then studying Artificial Intelligence & Machine Learning might be the perfect fit for you.
Scientists from the University of Cambridge have developed an algorithm that uses low-cost LiDAR sensors in smartphones to accurately measure tree diameter almost five times faster than traditional methods. The algorithm could revolutionize forest measurement and carbon sequestration monitoring. The app is designed to deal with natural irregularities and low-hanging branches, making it useful for non-managed forests. The researchers plan to make their app publicly available for Android phones later this spring.
Are you ready to explore the cutting-edge world of quantum computing? IBM has announced plans to build a 100,000-qubit machine within the next decade, partnering with the University of Tokyo and the University of Chicago in a $100 million dollar initiative. This technology could potentially tackle pressing problems that no standard supercomputer can solve, opening the door to a swath of classically impossible computing tasks. Don't miss out on this exciting development in the field of quantum computing! Read more about it in the MIT Technology Review.
Have you ever wondered how your data stays secure when you shop online or send sensitive information through email? Look no further than the fascinating field of Cryptography. Cryptography is the study of codes and ciphers used to protect information from unauthorized access. From ancient times to modern-day, cryptography has played a crucial role in securing communication and information. In recent years, cryptography has become even more critical with the rise of cyber threats and hacking. Cryptography experts are in high demand as they work to develop new and innovative ways to secure our data. At the undergraduate level, students typically study a range of topics such as mathematical foundations of cryptography, symmetric and asymmetric key cryptography, and digital signatures. They also explore real-life examples of cryptography in action, such as in secure messaging apps and online banking. Some potential areas of further specialization include network security, blockchain technology, and quantum cryptography. After graduation, there are a variety of exciting career paths available in the field of cryptography. Graduates may work for government agencies, financial institutions, or technology companies. Some notable employers include the National Security Agency, Google, and Microsoft. To succeed in cryptography, students should possess strong analytical and problem-solving skills, as well as an interest in mathematics and computer science. Creativity and innovation are also highly valued in this field. If you're interested in protecting information and making the digital world a safer place, consider studying cryptography. You'll be joining a community of experts who are dedicated to securing our data and staying one step ahead of cyber threats.
Have you ever gazed up at the night sky and wondered about the mysteries of the universe? If you have, then a career in astronomy might be the perfect fit for you! Astronomy is the study of celestial objects and phenomena, such as stars, planets, galaxies, and black holes. It is a fascinating field that offers endless opportunities for discovery and exploration. As an astronomer, you'll have the chance to work on groundbreaking research projects that can help us better understand the universe. For example, you might study the formation of stars and planets, investigate the properties of dark matter and dark energy, or search for signs of extraterrestrial life. With each new discovery, you'll be contributing to our collective knowledge of the cosmos. In addition to conducting research, astronomers also have a variety of other duties. They may teach astronomy courses at universities, develop new telescopes and other astronomical instruments, or work for government agencies such as NASA. Some astronomers even work in science communication, helping to make complex astronomical concepts accessible to the public. To become an astronomer, you'll need a strong background in physics, mathematics, and computer science. Many astronomers have a Ph.D. in astronomy or a related field, but there are also opportunities for those with a bachelor's or master's degree. Popular undergraduate majors for aspiring astronomers include physics, astronomy, and astrophysics. In addition to a strong academic background, there are certain personal attributes that can be helpful in a career in astronomy. These include curiosity, creativity, and attention to detail. You'll also need to be comfortable working independently and as part of a team. The job prospects for astronomers are generally good, with many opportunities available in both the public and private sectors. Some notable employers include NASA, the European Space Agency, and observatories around the world. With the continued growth of the space industry, the demand for skilled astronomers is expected to remain strong in the coming years. In conclusion, a career in astronomy is an exciting and rewarding choice for anyone with a passion for the mysteries of the universe. Whether you're studying the formation of stars or searching for signs of life on other planets, you'll be making a valuable contribution to our understanding of the cosmos. So why not take the first step towards a career in astronomy today?
Activities
People and Organizations