Article
More like this
Did you know that visiting a website can generate up to 10 times the recommended carbon emissions? Learn how businesses are reducing their web carbon footprint through renewable hosting and optimizing web design. Discover the tools that can help you calculate your website's environmental impact and explore the case study of a product design studio that reduced its homepage carbon emissions by 96%.
Carbon dioxide (CO2) is one of the most dangerous greenhouse gases that is causing global warming and climate change. It stays in the atmosphere for much longer than other gases such as methane, which only stays in the atmosphere for about 12 years, while CO2 can remain in the atmosphere for thousands of years. Leading climate scientists such as Dr. James Hansen agree that increasing levels of CO2 in the atmosphere are causing global temperatures to rise, leading to melting glaciers, rising sea levels, and more frequent and intense natural disasters such as hurricanes, droughts, and wildfires. Decarbonization is the process of reducing the carbon footprint of our economy by transitioning from fossil fuels to cleaner, renewable energy sources such as wind and solar. This is crucial in order to prevent dangerous levels of global warming and ensure a sustainable future for generations to come. One promising innovation in the field of decarbonization is carbon capture and storage (CCS), which involves capturing CO2 emissions from power plants and industrial processes and storing them underground. Another is the development of electric vehicles, which produce zero emissions and have the potential to greatly reduce our reliance on fossil fuels. Leading academics in the field, such as Dr. David McCollum, have emphasized the importance of decarbonization in limiting global temperature rise to below 2 degrees Celsius, a threshold beyond which the impacts of climate change would become catastrophic and irreversible.
Scientists at MIT have developed a process that could significantly reduce the cost of using carbon capture to fight global warming by drawing CO2 out of seawater. The process could appeal to small nations whose economies rely on tourism, aquaculture, and fishing industries that could be severely damaged by climate change. Another company, Captura Corp., is also working on a similar process and has received financial support from Saudi Arabian Oil Co. and a $1 million grant from a carbon removal XPRIZE competition.
Can heat batteries made from stacks of bricks be the solution to bringing renewable energy to heavy industries? Startups are exploring the potential of capturing clean electricity-generated heat and storing it for later use. With simple designs and commercially available materials, these systems could help wean industries off fossil fuels. Learn how heat batteries work and their potential to revolutionize the way we power heavy industries.
As solar and wind become more dominant, flow batteries offer a promising solution for storing renewable energy. Learn how they work and their benefits and challenges.
What if we could capture carbon emissions at low cost, using a common polymer found in dinnerware and utensils? Researchers at UC Berkeley and Stanford have developed a method for using melamine to capture carbon dioxide from smokestacks and vehicle exhaust, with efficiency comparable to more expensive materials. This breakthrough could help achieve net-zero carbon emissions by 2050, and the researchers are exploring ways to improve the carbon capture efficiency even further.
The world's shift towards electric vehicles to reduce greenhouse gas emissions will require a huge demand for critical metals like lithium, nickel, cobalt, manganese, and platinum. This demand will have economic and supply-chain consequences, according to new research from Cornell University. Discover how countries can manage this demand and promote a circular economy for critical metals.
Are you interested in sustainable energy solutions? Check out the amazing research by the University of Cambridge, where scientists have developed artificial leaves that convert CO2 and water into renewable fuels like ethanol and propanol using only sunlight! These fuels have a high energy density, produce net zero carbon emissions, and do not divert agricultural land away from food production. Read more about this groundbreaking technology in the journal Nature Energy.
"Reverse Ocean Acidification: A Solution to Our Carbon Dioxide Problem?" - As carbon dioxide emissions continue to threaten our planet, researchers at MIT may have found an innovative way to remove the gas from ocean water in a cost-effective and efficient manner. The versatility of their membrane-free electrochemical cell process could even lead to overall net negative emissions, reversing ocean acidification caused by carbon dioxide buildup.
Are you passionate about the environment and looking for a career that can make a positive impact on the planet? Look no further than a career in renewable energy! Renewable energy is the future of energy production and involves harnessing the power of natural resources such as wind, solar, hydro, and geothermal energy. As a renewable energy professional, you will be at the forefront of the fight against climate change, working to reduce our reliance on fossil fuels and create a more sustainable future. In this exciting and dynamic field, you will have the opportunity to work on cutting-edge projects that can have a real impact on the world. From designing and building wind turbines and solar panels to developing new energy storage solutions, the possibilities are endless. As a renewable energy professional, your duties may include conducting research, designing and implementing new technologies, managing projects, and working with clients to develop sustainable energy solutions. There are also many different areas of specialization within the field, such as solar energy, wind energy, and bioenergy. To get started in this exciting field, you will typically need a degree in a relevant field such as engineering, environmental science, or physics. Some popular undergraduate programs and majors include renewable energy engineering, sustainable energy systems, and environmental studies. In addition to technical skills, there are also several personal attributes that can be helpful in this field, such as a passion for sustainability, strong problem-solving skills, and the ability to work well in a team. The job prospects in renewable energy are excellent, with many exciting opportunities available in both the public and private sectors. Some notable employers include Tesla, Google, and the National Renewable Energy Laboratory. So if you're looking for a career that can make a real difference in the world, consider a career in renewable energy. With the potential to work on cutting-edge projects and help create a more sustainable future, it's a career that can truly be fulfilling and rewarding.
Are you interested in the environmental impact of the pharmaceutical industry? A new study by Cornell University and the Clinton Health Access Initiative has found that pharmaceutical producers could reduce their carbon footprint by up to 45% by optimizing manufacturing processes, supply chain networks, and switching to renewable energy sources. The study focused on the HIV antiretroviral drug Tenofovir Disoproxil Fumarate, exploring its full life-cycle carbon impact. The findings were published in ACS Sustainable Chemistry & Engineering. This comprehensive analysis is the first of its kind and could serve as a model for producing other drug molecules more sustainably.
The fashion industry contributes 4% of global greenhouse-gas emissions, emitting as much as France, Germany, and the UK combined. McKinsey research shows that the industry is on track to overshoot its 1.5-degree pathway to mitigate climate change by almost twofold. However, almost 90% of the measures required for accelerated abatement would cost less than $50 per metric ton of GHG emissions abated. Discover how the entire fashion value chain can drive decarbonization and bring about real and lasting change for the better in the industry.
Perovskite solar cells are a game-changer in the world of renewable energy. These cells are made from a material called perovskite, which is a type of mineral that can be easily manufactured and is highly efficient at converting sunlight into electricity. Did you know that perovskite solar cells have been shown to be more efficient at converting sunlight into electricity compared to traditional silicon solar cells? In just a few short years, the efficiency of perovskite solar cells has increased from just 3.8% to over 25%! This rapid improvement is thanks to the work of leading academics in the field, including Professor Henry Snaith of the University of Oxford, who was one of the first researchers to demonstrate the potential of perovskite solar cells. Not only are perovskite solar cells more efficient, they are also much cheaper to produce than traditional silicon solar cells. This means that they have the potential to make renewable energy more accessible to people all over the world. So what makes perovskite solar cells so special? It all comes down to their unique structure. Unlike silicon solar cells, which have a rigid structure, perovskite solar cells have a flexible structure that allows them to absorb more light. This flexibility also means that they can be made into different shapes and sizes, making them easier to integrate into a variety of applications, from rooftop solar panels to portable solar chargers. In conclusion, perovskite solar cells are a promising technology that has the potential to revolutionize the renewable energy industry. With their high efficiency and low cost of production, they are poised to make a significant impact on the world's energy supply and help to combat climate change. Whether you are interested in science, engineering, or the environment, there is something for everyone in the world of perovskite solar cells. So why not take a closer look and discover the possibilities for yourself?
The world is constantly changing, and as high school students, it is essential to be aware of the problems that need solutions. Vinisha Umashankar, a 14-year-old from India, noticed the pollution caused by charcoal usage in the metal irons of street vendors and decided to take action. She designed an ironing cart powered by solar energy, eliminating the use of charcoal, deforestation, air pollution, and respiratory diseases caused by the traditional method. Learning about solar energy and sustainable solutions like Vinisha's can benefit you not only intellectually but practically as well. By exploring these concepts further, you can contribute to creating a better world for yourself and the generations to come.
Imperial researchers have found that integrating solar and battery power in refugee camps can drastically reduce fuel expenditure and emissions while also boosting the local economy. The system, funded in part by a grant from the UKRI Global Challenges and Research Fund, could provide reliable access to electricity for more people. Find out how this innovative solution can improve the lives of displaced people.
New research shows that the cost of annual flooding in the UK could increase by up to 23% over the next century due to climate change, unless all international pledges to reduce carbon emissions are met. The study, led by the University of Bristol and Fathom, highlights the need for urgent action to mitigate the impact of climate change on the risk of flooding across the UK. The research also identifies the areas of the UK where risks will increase the most, including densely populated cities such as London, Cardiff, Manchester, Glasgow, and Edinburgh.
The US power grid is the world's largest machine, containing more than 7,300 electricity-generating plants, linked by some 11 million kilometers of powerlines, transformers, and substations. Power grid operators maintain a delicate balance between energy supply and demand, ensuring that their components work in unison and maintain a constant frequency throughout the grid. Power grids contain a mix of carbon-free and carbon-emitting energy sources, and researchers are experimenting with unique storage solutions to make full use of renewable energy sources. By shifting energy use to the times when there's clean electricity to spare, load flexibility can help flatten the peaks in demand, reducing the need for non-renewables. Smart devices like air conditioners, water heaters, and electric vehicle chargers can be implemented to decrease emissions by around 20%. Learning about power grids and renewable energy sources can help students understand the importance of balancing energy supply and demand and inspire them to explore ways to reduce their carbon footprint.
Are you interested in finding ways to conserve energy and promote sustainability? Look no further than the field of Energy Management! This exciting and dynamic field is dedicated to finding innovative solutions to the world's energy challenges. Energy Management is a field of study that involves the management of energy resources, including the production, distribution, and consumption of energy. This field is becoming increasingly important as the world faces the challenges of climate change and the need for sustainable energy sources. One of the most interesting aspects of Energy Management is the constant innovation and research in the field. From developing new technologies to improving existing ones, Energy Management is at the forefront of the fight against climate change. Some of the most inspiring academic figures in this field include Amory Lovins, who has made significant contributions to energy efficiency and renewable energy, and Rachel Kyte, who focuses on sustainable energy solutions for developing countries. At the undergraduate level, Energy Management majors typically take courses in energy policy, renewable energy, and energy efficiency. Students can also specialize in areas such as energy finance, energy economics, and energy law. Some interesting examples of specializations include working with wind turbines, developing solar power systems, and designing energy-efficient buildings. Upon graduation, Energy Management graduates can pursue a range of exciting career opportunities. Some potential job roles include energy analyst, energy consultant, renewable energy specialist, and sustainability manager. Key industries for prospective future employment include renewable energy, energy efficiency, and sustainability consulting. Notable potential employers in this field include Tesla, Google, and the United Nations. To succeed in Energy Management, it's important to have a passion for sustainability and a strong background in science and math. Additionally, strong communication skills and the ability to work collaboratively are essential for success in this field. In conclusion, if you're interested in making a positive impact on the world by promoting sustainability and finding innovative energy solutions, Energy Management may be the perfect field of study for you!
Can economic growth and climate goals be reconciled? McKinsey's research suggests a tenfold increase in carbon productivity is needed by 2050, comparable to the Industrial Revolution. The cost of this "carbon revolution" is manageable, but without it, we face stark consequences. Explore how we can capture the lowest-cost abatement opportunities to achieve critical emissions targets and avoid a major drop in lifestyle.
Traditional diamond mining is a billion-dollar industry with significant environmental impact, releasing large amounts of carbon emissions and causing damage to local ecosystems worldwide. However, carbon-negative diamonds are produced through a process that actually captures carbon emissions from the atmosphere, making them a much more sustainable alternative for the jewellery industry. Aether Diamonds, a major player in this industry, uses direct-capture technology for diamond production in a two-step process. First, a reactor is used to extract the carbon dioxide from the atmosphere, while this raw carbon material is placed in another reactor that kickstarts the diamond-growing process. The resulting diamonds are visually indistinguishable from traditionally-mined diamonds and have the same physical and chemical properties, but have been produced with a much lower carbon footprint. This ingenious solution reimagines existing carbon-capture services, where firms are paid by various multinational corporations to capture their carbon emissions, by recycling this extracted carbon dioxide for an inventive purpose. By eliminating 20 tons of carbon dioxide for every 1-carat diamond produced, each diamond can actively contribute to carbon emission reduction efforts. Beyond the jewelry industry, researchers have used a similar process to produce important industrial materials from carbon. Dr. Stuart Licht, a chemistry professor at George Washington University, is a leading academic in this field of renewable technology. His patented technology, the Solar Thermal Electrochemical Photo (STEP) energy conversion, captures carbon dioxide using renewable solar energy to create carbon nanofibers. This material provides a lighter and stronger alternative to metals like steel, and is used in luxury sports cars, aeroplanes like the Boeing Dreamliner, and high-end athletic equipment. These creative uses of carbon-capture technology offer a promising future, especially with carbon-negative diamonds for the sustainable fashion industry. Beyond that, these diamonds also offer a more ethical alternative — sustainable diamond production avoids the international human rights abuses and violence that traditional diamond mining has been linked to. All in all, carbon-negative diamonds have the potential to revolutionize the sustainable fashion industry and beyond, and are a fascinating scientific innovation with many exciting future implications.
Activities
People and Organizations