Article
More like this
The Permian-Triassic extinction event that wiped out 95% of life on Earth serves as a model for studying the current biodiversity crisis. Researchers from the University of Bristol, the California Academy of Sciences, and the China University of Geosciences analyzed marine ecosystems before, during, and after the event to understand the series of events that led to ecological destabilization. They found that the rate of species loss today outpaces that during the Great Dying, and stress the importance of considering functional redundancy in modern conservation strategies.
Plants have been evolving for millions of years and have developed incredible adaptations to survive in their environments. One of the most impressive adaptations is drought resistance. In this write-up, we will explore the fascinating world of plant evolution and the incredible ways that plants have adapted to survive in dry environments. Did you know that there are plants that can survive without water for years? The cactus is one such plant that has developed unique adaptations to survive in the harsh desert environment. Its thick stems store water, and its shallow roots can quickly absorb moisture when it rains. The cactus also has small leaves that reduce water loss through transpiration and spines that provide shade to the stem, reducing water loss even further. Another interesting example of drought resistance in plants is the succulent. Succulents store water in their leaves, which become plump when water is available and shrink when water is scarce. They also have shallow roots that spread widely to quickly absorb moisture when it rains. Leading academics in the field of plant evolution and drought resistance have made significant contributions to our understanding of these adaptations. For example, Dr. Christine A. Beveridge has studied the molecular mechanisms behind drought resistance in plants and have identified genes that play a crucial role in this process. Her work has led to the development of drought-resistant crops, which have the potential to improve food security in dry regions. In conclusion, the world of plant evolution and drought resistance is full of fascinating facts, stories, and examples. By exploring this topic independently, students can deepen their understanding of the amazing adaptations that plants have developed over millions of years to survive in their environments.
Tardigrades have even been featured in popular culture, including an episode of Star Trek: Discovery, where they were used as a propulsion system for a spaceship. But while tardigrades may seem like science fiction, they are very much a real and fascinating part of the natural world. These tiny, water-dwelling creatures, also known as water bears or moss piglets, have been around for over half a billion years and have evolved some truly remarkable survival strategies. Tardigrades can survive in extreme environments that would kill most other organisms, including temperatures ranging from -272°C to 151°C, pressures six times greater than those at the bottom of the ocean, and even the vacuum of space. They can also survive dehydration, radiation, and exposure to toxins. Tardigrades achieve this impressive feat through a combination of strategies, including the ability to enter a state of suspended animation called cryptobiosis, which allows them to survive without water for years. One of the key factors that enable tardigrades to survive in such extreme conditions is their ability to repair their DNA. Tardigrades have a unique protein called Dsup, which protects their DNA from damage caused by radiation. This protein has even been shown to protect human cells from radiation damage. Dr. Thomas Boothby, a leading tardigrade researcher at the University of Wyoming, has discovered that tardigrades can also produce large amounts of unique proteins called tardigrade-specific intrinsically disordered proteins (TDPs) in response to desiccation. These proteins help protect the tardigrades' cells from damage and prevent them from drying out. Tardigrades are fascinating not just for their survival abilities, but also for their unique biology. They have a complex digestive system, a unique nervous system, and a fascinating reproductive system that involves the transfer of genetic material between individuals. By exploring the science behind these tiny creatures, we can gain a deeper understanding of the natural world and the amazing ways that living organisms can survive and thrive in even the most extreme conditions.
Pesticides not targeted at flowers may pose a hidden threat to pollinators, according to new research from Trinity and DCU. The study, the first of its kind in Ireland, found residues of several pesticides in the nectar and pollen of both crop and wild plants, with some chemicals lingering for years after application. The findings have implications for the health of bees and other pollinators, as well as for ecosystem function, crop production, and human health.
Have you ever wandered through a forest and wondered about the secrets that lie within? The Hidden Life of Trees by Peter Wohlleben is a fascinating exploration of the communication and community that exists within forests. Wohlleben shares his love for the woods and explains the incredible processes of life, death, and regeneration that take place in the woodland. Through groundbreaking discoveries, he reveals the previously unknown life of trees and their communication abilities. Discover how trees live together with their children, share nutrients, and create an ecosystem that benefits the whole group. Recommended for environmentalists, biologists, ecologists, and anyone interested in the natural world. The Hidden Life of Trees provides a unique perspective on the life and communication of trees, revealing the intricate processes of the forest ecosystem. It offers insights into the importance of community and the impact of solitary life on trees, which can also be applied to human society. This book is relevant to those interested in environmental sustainability and the impact of eco-friendly practices on the health of our planet. It is also a fascinating read for those who simply appreciate the beauty and complexity of the natural world.
Did you know that almost everything around you is being eaten by tiny organisms called microbes? These hordes of bacteria, archaea, and fungi have evolved to break down tough organic material into digestible nutrients. However, there is one material that almost no microbes can biodegrade: plastics. This is because most plastics have only been around since the 1950s, so most microbes haven't had time to evolve enzymes to digest them. As a result, plastics just turn into countless, tiny, indigestible pieces that pollute the environment. However, researchers have discovered microbes that may be able to take a bite out of this growing problem, creating super-enzymes that could break down plastics faster. By exploring the science behind microbes and biodegradability, you can learn how to become part of the solution to this global issue. Not only will you expand your knowledge, but you will also contribute to creating a cleaner, healthier planet.
Climate change is putting numerous European seabirds at risk. A new conservation guide, led by ZSL and University of Cambridge, offers hope for the future of these important marine birds by assessing their specific needs and actions needed for preservation. Don't let iconic species like the Atlantic puffin disappear from our shores!
In just 70 years, the UK's landscape has undergone drastic changes, with non-native species thriving and native plants dwindling due to modern agriculture and climate change. The Plant Atlas 2020, produced by the Botanical Society of Britain and Ireland, reveals the catastrophic loss of grasslands, heathlands, and other habitats that would shock those brought up in the 1950s. The survey also highlights the impact of climate change on plant life and calls for stronger laws and sustainable land management to protect flora. Sir David Attenborough presents a new BBC documentary, Wild Isles, on the subject.
The making of chocolate is a primitive and unpredictable process involving wild rainforest insects, fungi, and microbes. Discover how the microbiome of cacao trees, tiny midges, and fermentation contribute to the $110-billion chocolate industry. Learn how researchers are working to standardize cacao-making and develop cacao-fermentation "starters."
Do you find the microscopic world fascinating? Are you interested in exploring the hidden world of microorganisms? If so, a career in microbiology might be just what you're looking for! Microbiology is the study of living organisms that are too small to be seen with the naked eye, such as bacteria, viruses, fungi, and parasites. As a microbiologist, you'll have the opportunity to explore the fascinating world of microorganisms and make important contributions to fields like medicine, agriculture, and environmental science. One of the most appealing aspects of a career in microbiology is the potential to make a real difference in the world. For example, microbiologists play a critical role in developing vaccines and treatments for infectious diseases like COVID-19. They also work to develop new agricultural techniques that can improve crop yields and reduce the use of harmful pesticides. As a microbiologist, your duties might include conducting research, analyzing data, and developing new techniques for studying microorganisms. You might also specialize in a particular area of microbiology, such as medical microbiology, environmental microbiology, or industrial microbiology. To become a microbiologist, you'll typically need a bachelor's degree in microbiology, biology, or a related field. Some popular undergraduate programs and majors include microbiology, biochemistry, and molecular biology. In addition to a strong academic background, there are several personal attributes that can be helpful in a career in microbiology. These include a strong attention to detail, excellent problem-solving skills, and the ability to work well in a team. Job prospects for microbiologists are generally strong, with opportunities available in both the public and private sectors. Some notable potential employers include the Centers for Disease Control and Prevention (CDC), the National Institutes of Health (NIH), and pharmaceutical companies like Pfizer and Johnson & Johnson. So if you're interested in exploring the fascinating world of microorganisms and making a real difference in the world, a career in microbiology might be the perfect fit for you!
Are fast-lived species taking over the world? Recent research published in Global Change Biology found that fast-lived animals are increasing in numbers while slow-lived animals are in decline, especially in areas of rapid cropland or bare soil expansion. The study raises important questions about how human actions are rewiring natural ecosystems and the far-reaching effects on the natural world.
Want to know the secret to drought-resistant plants? A group of researchers from Yale, Bates College, University of Maine, Haverford College, and other institutions have discovered that plants with more complex water transport structures are more resistant to droughts, increasing their chances of survival and passing on this trait to their offspring.
How do we grow seedless fruit? Discover the fascinating history and science behind hybridization and grafting, and the latest genetic research that could lead to new seedless varieties. From Navel oranges to mutant sugar apples, explore the world of fruit breeding.
Pollinators, such as bees and butterflies, are essential to our planet's biodiversity. They facilitate the reproduction of flowering plants, which in turn support other wildlife and contribute to the overall health of ecosystems. Sadly, pollinators face numerous threats, including habitat loss, pesticides, and climate change. In this write-up, we'll explore the vital role of pollinators in biodiversity conservation, as well as the challenges they face. First, let's define biodiversity. It refers to the variety of life on Earth, including different species, ecosystems, and genetic diversity within species. Pollinators play a crucial role in maintaining this diversity by helping plants reproduce. Over 75% of the world's food crops depend on pollinators, and they also support the growth of wildflowers and other plants that provide habitat for other animals. But pollinators are in trouble. According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), over 16% of vertebrate pollinators, such as birds and bats, are threatened with extinction. In addition, around 40% of invertebrate pollinator species, such as bees and butterflies, are facing the same fate. One leading academic in this field is Dr. Dave Goulson, a professor of biology at the University of Sussex. He has conducted extensive research on the importance of pollinators and the threats they face. In his book, "The Garden Jungle," he emphasizes the role of urban gardens in supporting pollinators and other wildlife. Another academic, Dr. Rachael Winfree from Rutgers University, has studied the impact of habitat fragmentation on pollinator communities. Her research shows that smaller patches of habitat can still support pollinators, but it's crucial to have a diversity of plants and habitats available. So, what can we do to help pollinators? There are many actions we can take, from planting pollinator-friendly gardens to reducing pesticide use. We can also support organizations that work to protect pollinators, such as the Xerces Society and the Pollinator Partnership. In conclusion, pollinators play a vital role in maintaining biodiversity, but they face numerous threats. By learning more about pollinators and taking action to protect them, we can help to ensure a healthy and diverse planet for future generations.
Understanding the science behind the changing colors of leaves in the fall is not only fascinating but also important for our understanding of the natural world around us. The process is triggered by less daylight, causing the old chlorophyll to disappear and yellow and orange pigments to become visible. The intensity of the colors is connected to temperature, and the drier autumn weather triggers a hormone telling the tree to drop its leaves. Evergreens have a waxy coating and contain a chemical like anti-freeze to survive the winter. By learning about these concepts, students can gain a deeper appreciation for the natural world and develop critical thinking skills. Additionally, understanding the science behind fall leaves can inspire students to explore other scientific topics and engage in self-directed projects.
Have you ever imagined walking alongside a giant, hairy elephant with long tusks and a hump of fat on its back? Meet the woolly mammoth, an extinct species that lived during the Ice Ages. As you learn about the woolly mammoth, you will discover fascinating features such as their two-layered fur and impressive size, which was larger than modern elephants. More than just a fun fact, studying extinct animals like the woolly mammoth can help us understand how Earth's climate and environment have changed over time, and how humans have influenced the planet. By exploring these academic concepts through reading, reflection, writing and self-directed projects, you can develop your intellectual curiosity and creativity while also gaining practical skills in research, critical thinking, and communication.
Maria Sibylla Merian was a naturalist and illustrator who defied convention and made significant contributions to the study of entomology, the study of insects. She was one of the first to describe the metamorphosis of insects in detail and portrayed insects surrounded by the plants they relied on, revealing their relationship to the wider ecosystem. Merian's groundbreaking work, 'The Metamorphosis of the Insects of Suriname', published in 1705, documented many species in Suriname's jungle, and its stunning illustrations depicted stages of development of Suriname's veracious caterpillars and vibrant butterflies. Merian's legacy has endured, and her work on the biodiversity of Suriname is still valued by scientists and could show us how some species may adapt to climate change. Learning about Merian's work can inspire students to explore and appreciate the natural world, understand the importance of biodiversity, and encourage them to pursue their passions despite challenges and societal expectations.
Oxybenzone in sunscreens is disrupting coral reefs, leading to international bans. Scientists are now exploring eco-friendly alternatives like mycosporine-like amino acids (MAAs) found in ocean organisms that offer potent UV-absorbing shields, antioxidants, and anti-inflammatory properties. However, regulatory hurdles and environmental concerns remain. Discover the latest research and innovations in the search for safer and more effective sunscreens.
Stanford-led research finds that the world's largest animals, rorqual whales, owe their size to feeding on tiny creatures in the sea. However, their survival requires a minimum body size, which could put them at risk of extinction due to rapid environmental change. By examining the smallest living species in this group, the authors found that individuals need to grow to at least 4.5 meters to eat enough food to survive. The study sheds light on how climate change might affect krill populations and put certain whale species at risk of extinction.
Soil is one of the most underrated and little-understood wonders of our planet, yet it is crucial to our survival. In just one teaspoon of soil, there are more microorganisms than there are people on Earth. These microorganisms produce antibiotic compounds that form the basis of many of the antibiotics used by humans. Soil is also home to earthworms and intricate webs of fungal threads that create space for plant roots to grow and keep soil alive. Soil provides us with almost everything we eat, and it is a valuable carbon store, capturing and locking away carbon deep underground. However, soil is under threat from intensive farming and other human activities. It takes more than 100 years to build just 5 millimetres of soil, but just moments to destroy it. It's important to value, appreciate, and protect soil for many reasons, including regulating our atmosphere, reducing flooding, and providing a biodiverse habitat. Learning more about soil can help us understand the interconnected ecosystem we're all part of and inspire us to protect this vital resource for future generations.
Activities
People and Organizations