Article
More like this
Ever wonder how computers turn a blurry image into a crisp one? New research from MIT and UC Berkeley reveals how neural networks can de-blur fuzzy images with a "generative" model algorithm. But how accurate are the results? The researchers developed a way to represent uncertainty in a way that is meaningful for non-experts, offering a range of images with precise bounds and probabilistic guarantees. This milestone not only has implications for image restoration, but also for fields such as medical imaging and law enforcement.
The World Wide Web is an integral part of our daily lives, but do you know what it really is? It's not the same as the internet, which is simply a way for computers to share information. The World Wide Web is like a virtual city, where we communicate with each other in web languages, with browsers acting as our translators. What makes the Web so special is that it's organized like our brains, with interconnected thoughts and ideas, thanks to hyperlinks. By exploring the World Wide Web, you can learn more about web languages like HTML and JavaScript, and gain valuable skills in communication, research, and problem-solving. Plus, you'll be part of a global community that connects minds across all boundaries. So why not dive in and explore this fascinating virtual city?
MIT researchers have found a way to reduce the time and cost of training large machine learning models by leveraging smaller models. This technique could help researchers make advancements faster with less expense and reduce carbon emissions. MIT's Yoon Kim and his team's method saves about 50% of the computational cost required to train a large model, compared to methods that train a new model from scratch. The research will be presented at the International Conference on Learning Representations.
Are you interested in artificial intelligence, data science, and solving complex problems using cutting-edge technology? If so, a career in machine learning might be just the path for you. Machine learning is an exciting and rapidly growing field that allows computers to learn and make decisions based on data, without being explicitly programmed. As a machine learning engineer or scientist, you can use your skills to tackle real-world problems and create innovative solutions. In this field, you could work on developing new algorithms to analyze vast amounts of data, build and train predictive models, and design intelligent systems that can learn and adapt on their own. For example, you might work on creating a chatbot that can answer customer queries, or on designing self-driving cars that can safely navigate roads and make real-time decisions. Typical duties in machine learning can vary based on your area of specialization, which could include natural language processing, computer vision, deep learning, or reinforcement learning, among others. You might work in research and development, or in a practical setting, helping to implement machine learning solutions in businesses, healthcare, finance, or other industries. Other related fields in this area include data science, artificial intelligence, and computer programming. To prepare for a career in machine learning, you will typically need a strong background in math, statistics, and computer science. You might pursue a degree in a relevant field such as computer science, electrical engineering, or applied math. Some popular undergraduate programs include a Bachelor's in Computer Science, a Bachelor's in Mathematics, or a Bachelor's in Data Science. You might also pursue a Master's or PhD in Machine Learning or a related field, to gain specialized expertise. Helpful personal attributes for a machine learning career include a strong analytical mindset, excellent problem-solving skills, attention to detail, and the ability to work independently and as part of a team. You should also be curious, creative, and have a passion for learning, as this field is constantly evolving. The job prospects for machine learning professionals are excellent, with a strong demand for these skills across many industries. Major tech companies like Google, Amazon, and Microsoft are among the top employers in this field, along with many startups and other private and public sector organizations. The long-term outlook for machine learning is very promising, as the technology is expected to continue to advance and play an increasingly important role in our lives.
Language models can perpetuate societal biases, but MIT researchers have trained a logic-aware model that significantly mitigates harmful stereotypes. With 350 million parameters, this model outperformed larger models on logic-language understanding tasks and had higher iCAT scores, indicating fewer stereotypes. The researchers propose this fair, smaller, and locally deployable model as a solution to challenges faced by current language models, such as fairness, computational resources, and privacy. While language models may still have a long way to go in achieving neutrality, this research offers a promising step forward.
Want to make social media a more positive and inclusive space? Researchers from King's College London and Harvard University have created a framework to prioritize content that fosters positive debate, deliberation and cooperation on social media. Algorithms that surface content aimed at building positive interactions could be more highly ranked, leading to more meaningful online interactions and a reduction in destructive conflict.
Are you fascinated by the possibilities of artificial intelligence and machine learning? Do you have a passion for problem-solving and a natural curiosity about the world around you? If so, a career as an AI/ML Engineer might be the perfect fit for you! As an AI/ML Engineer, you'll be at the forefront of one of the most exciting and rapidly growing fields in technology today. You'll work with cutting-edge algorithms and tools to develop intelligent systems that can learn, reason, and make decisions on their own. From self-driving cars to personalized healthcare, the possibilities are endless. Your typical duties as an AI/ML Engineer might include designing and implementing machine learning models, analyzing data to identify patterns and trends, and collaborating with other engineers and data scientists to develop innovative solutions to complex problems. You might specialize in areas like natural language processing, computer vision, or robotics, or work in related fields like data science or software engineering. To prepare for a career in AI/ML engineering, you'll need a strong background in computer science, mathematics, and statistics. Popular undergraduate programs and majors include computer science, mathematics, statistics, and electrical engineering. Helpful personal attributes include a strong work ethic, attention to detail, and a willingness to learn and adapt to new technologies and methodologies. Job prospects for AI/ML Engineers are excellent, with strong demand from both public and private sector employers around the world. Some notable and attractive potential employers include tech giants like Google, Amazon, and Microsoft, as well as cutting-edge startups and research institutions. And with the continued growth of AI and machine learning, the longer-term outlook for this field is very promising indeed. So if you're looking for a career that combines cutting-edge technology, intellectual challenge, and the potential to make a real impact on the world, consider a career as an AI/ML Engineer. The possibilities are endless!
Are you fascinated by technology and the limitless possibilities it holds? Do you have a passion for problem-solving and a desire to make a real impact on the world? Look no further than the exciting field of Artificial Intelligence (AI). AI is the study of intelligent agents, which are computer programs that can perform tasks that typically require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. From self-driving cars to virtual personal assistants, AI is transforming the way we live and work. At the forefront of AI research are innovators like Andrew Ng, who co-founded Google Brain and Coursera, and Yoshua Bengio, who won the prestigious Turing Award for his work in deep learning. These academic giants have paved the way for groundbreaking developments in AI, such as natural language processing and computer vision. As an undergraduate in AI, you'll delve into a range of fascinating modules, such as machine learning, robotics, and data mining. You'll also have the opportunity to specialize in areas such as computer vision, natural language processing, and game AI. Imagine creating a robot that can navigate a maze or designing a system that can translate languages in real-time. But what about the future? With a degree in AI, you'll be well-equipped for a range of exciting careers, including data scientist, machine learning engineer, and AI researcher. You could work for tech giants like Google, Facebook, and Amazon, or for cutting-edge startups like OpenAI and DeepMind. And it's not just tech companies that need AI experts - industries like healthcare, finance, and transportation are all looking for talented AI professionals. To succeed in AI, you'll need a strong foundation in mathematics, computer science, and programming. But equally important are skills like critical thinking, problem-solving, and creativity. If you're passionate about technology and driven to make a difference, a degree in AI could be the perfect fit for you.
Neural networks are computer systems designed to operate similarly to the human brain. These networks have revolutionized the field of computer science and have transformed the way we process and analyze data. The study of neural networks is a fascinating and exciting area of research, with many appealing and meaningful aspects. One of the most interesting aspects of neural networks is the way they can learn from data. For example, facial recognition technology uses neural networks to learn and recognize faces. This has transformed security systems and made our lives easier. Similarly, self-driving cars use neural networks to process data and make decisions on the road. There are many famous academics in the field of neural networks, including Geoffrey Hinton, Yann LeCun, and Yoshua Bengio, who won the 2018 Turing Award for their work on deep learning. Their research has led to innovations in natural language processing, image recognition, and speech recognition, among others. At the undergraduate level, students can study neural networks as part of a computer science or electrical engineering major. Students will learn about the principles of neural networks and how they are applied in various fields. They can specialize further in machine learning, data science, or artificial intelligence. There are many potential jobs and roles that students can pursue after studying neural networks, including data analyst, software engineer, and machine learning engineer. Top companies that work with neural networks include Google, Facebook, Amazon, and Tesla, to name just a few. To succeed in the field of neural networks, students should have a strong foundation in mathematics and computer science. They should also have an interest in machine learning, data science, and artificial intelligence.
Are you curious about Artificial Intelligence (AI) but intimidated by the mathematical complexity behind it? Artificial Intelligence for Humans is a book series that breaks down AI algorithms into digestible chunks, using simple language and actual numeric calculations. In the first book, you'll learn foundational algorithms such as clustering, linear regression and hill climbing, which are not only fundamental for the rest of the series but also useful on their own. This book requires only basic college algebra or computer programming knowledge, making it accessible to anyone interested in AI. Recommended for students and professionals interested in Artificial Intelligence, Computer Science, Mathematics, and Engineering, as well as anyone curious about how AI algorithms work. This book series is especially relevant for those without an extensive mathematical background, as it uses simple language and actual numeric calculations to explain complex concepts. The first book teaches foundational algorithms such as clustering, linear regression and hill climbing, which are not only useful in AI but also in other fields that involve data analysis and prediction. Additionally, the programming examples provided in various languages make this book series practical for those who want to apply AI algorithms in their own projects.
Are you fascinated by the idea of machines that can think and learn like humans? Do you want to be at the forefront of technological innovation? Then studying Artificial Intelligence & Machine Learning might be your calling! Artificial Intelligence & Machine Learning is a field of study that focuses on creating intelligent machines that can perform tasks that typically require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. It involves a combination of computer science, mathematics, and statistics. One of the most exciting aspects of this field is the potential for real-life applications. For example, self-driving cars, virtual personal assistants like Siri and Alexa, and facial recognition technology are all examples of AI and machine learning in action. The field of AI & Machine Learning is constantly evolving, with exciting research and innovations happening all the time. Some notable academic figures in the field include Geoffrey Hinton, who developed deep learning algorithms, and Andrew Ng, who co-founded Google Brain and Coursera. At the undergraduate level, typical majors and modules might include programming, data analysis, and machine learning algorithms. There are also many potential areas of further specialisation, such as natural language processing, computer vision, and robotics. If you pursue a degree in AI & Machine Learning, you'll be well-equipped for a range of exciting future jobs and roles. Some key industries for prospective employment include healthcare, finance, and transportation. Companies like Google, Amazon, and Microsoft are all actively hiring for AI and machine learning roles. To succeed in this field, you'll need a strong foundation in math and computer science, as well as an interest in problem-solving and a willingness to keep up with the latest developments in the field. If you're interested in creating cutting-edge technology that has the potential to change the world, then studying Artificial Intelligence & Machine Learning might be the perfect fit for you.
Cornell researchers have made a breakthrough in fault-tolerant quantum computing by constructing a model with non-Abelian anyons, exotic particles that can protect bits of quantum information by storing them non-locally. This discovery opens up new opportunities for quantum computation, and the researchers have even provided specific instructions for executing the experiment on devices available today. Collaborating with Google Quantum AI, they have successfully proved the theory with an experiment, making non-Abelian anyons a reality. This breakthrough could pave the way for a new era in quantum computing.
Have you ever used a voice assistant like Siri or Alexa? Or maybe you've used facial recognition to unlock your phone? These are examples of multimodal sensing - a technology that combines multiple sensors to gather data about the world around us and help us interact with machines in a more intuitive way. So, what is multimodal sensing, and how does it work? Simply put, it's a technology that combines data from multiple sources - like cameras, microphones, and touch sensors - to create a more complete picture of what's happening. For example, a smartwatch might use sensors to track your heart rate, activity level, and location to provide more accurate fitness data. But multimodal sensing goes beyond just gathering data - it also involves using that data to create a more natural interaction between humans and machines. For example, using voice recognition and natural language processing, a voice assistant can understand your commands and respond in a way that feels like you're having a conversation with a real person. One of the pioneers of multimodal sensing is Rosalind Picard, a professor at the Massachusetts Institute of Technology (MIT). Picard has been researching this field for over 20 years and is the founder of the Affective Computing Group at MIT. She believes that multimodal sensing has the potential to help us better understand and manage our emotions, and to create more empathetic machines that can respond to our emotional states. Another leading academic in this field is Ming-Hsuan Yang, a professor at the University of California, Merced. Yang's research focuses on computer vision and machine learning, and he has developed algorithms that can analyze facial expressions to understand emotions and intention. Multimodal sensing has a wide range of applications in various industries, including healthcare, transportation, and entertainment. For example, it can be used to create more personalized and effective medical treatments, to improve driver safety by detecting drowsiness and distraction, and to create more immersive virtual reality experiences. Multimodal sensing is a fascinating and rapidly evolving field that has the potential to transform the way we interact with technology. By exploring this topic further, you can gain a deeper understanding of how it works and its potential impact on the world around us.
Dive into the world of deep learning with this updated edition of a best-selling book, even if you have little knowledge of the technology. With concrete examples and two Python frameworks, Scikit-Learn and TensorFlow 2, you'll gain an intuitive understanding of building intelligent systems. Part 1 covers fundamental tasks, such as simple linear regression, while Part 2 guides you through advanced methods using deep neural networks. With exercises in each chapter, you'll be able to apply what you learn. Get ahead of the curve with Early Release ebooks, and receive updates as the author writes. Recommended for students and professionals interested in machine learning, artificial intelligence, and computer programming, this book offers a comprehensive introduction to deep learning. With minimal theory and practical examples, readers can easily gain an understanding of the key concepts and tools for building intelligent systems. The book is also relevant for those in the fields of data science, engineering, and technology who want to expand their knowledge and skills in machine learning. Additionally, the book's coverage of TensorFlow 2 and Keras makes it a valuable resource for those interested in these specific frameworks.
Are you curious about the technology behind automated speech recognition, web search engines, and movie streaming services? Look no further than the innovative field of machine learning! In "Python Machine Learning," you will learn how to transform raw data into useful information, develop learning algorithms efficiently, and evaluate results. With step-by-step guidance and real-world applications, this book will expand your skill set and teach you how to build your own machine learning system for sentiment analysis. Discover the power of Python and unlock the potential of machine learning today! Recommended for students and professionals interested in data analysis, artificial intelligence, and computer science, "Python Machine Learning" provides a comprehensive introduction to the exciting field of machine learning. With a focus on practical applications and real-world examples, this book offers valuable insights for those interested in developing learning algorithms, classifying objects, and finding hidden structures in data through clustering. Whether you are interested in building your own machine learning system or embedding models into web apps, "Python Machine Learning" is an essential resource for anyone looking to explore the vast possibilities of this innovative field.
Meet EchoSpeech, a wearable interface that recognizes unvocalized commands based on lip and mouth movements. Developed by Cornell's SciFi Lab, the glasses use acoustic sensing and AI to recognize up to 31 commands with 95% accuracy. EchoSpeech could give patients their voices back and be used to communicate in noisy places or paired with a stylus for design software. With smaller microphones and speakers than pencil erasers, the glasses become a wearable AI-powered sonar system. The technology removes the need for wearable video cameras, improving privacy and battery life.
Are you curious about how social media algorithms work? Do you want to know if you can "game" them to see more of the content you want? Check out this article from The Conversation to learn more about the inner workings of social media algorithms and how you can curate your social media to serve you better.
Are you fascinated by the idea of machines learning from data and making predictions on their own? Look no further than the exciting field of Machine Learning! Machine Learning is a subfield of Artificial Intelligence that focuses on developing algorithms and models that enable machines to learn from data and make predictions or decisions without explicit programming. It has revolutionized the way we interact with technology, from personalized recommendations on Netflix to self-driving cars. Some of the most interesting and meaningful aspects of Machine Learning include its applications in healthcare, finance, and environmental sustainability. For example, Machine Learning algorithms can analyze medical data to diagnose diseases or predict patient outcomes, while also identifying patterns in financial data to detect fraud or predict stock prices. Innovations in Machine Learning are happening all the time, with exciting research being done in areas such as deep learning, reinforcement learning, and natural language processing. Some of the most inspiring academic discourse in the field comes from renowned figures like Andrew Ng, Yoshua Bengio, and Geoffrey Hinton, who have made significant contributions to the development and advancement of Machine Learning. At the undergraduate level, typical majors and modules in Machine Learning include courses in statistics, computer science, and mathematics. Students can specialize further in areas such as computer vision, natural language processing, or robotics. Examples of real-life applications of Machine Learning include image recognition in social media, language translation in Google Translate, and predictive maintenance in manufacturing. A degree in Machine Learning can lead to a range of exciting and lucrative career opportunities. Graduates can work in fields such as data science, machine learning engineering, or artificial intelligence research. Key industries for prospective future employment include tech, finance, healthcare, and automotive. Notable employers in these industries include Google, Amazon, Microsoft, and Tesla. To succeed in Machine Learning, students should have a strong foundation in mathematics and computer science, as well as an interest in data analysis and problem-solving. Good communication skills are also important, as Machine Learning often involves working in interdisciplinary teams. In conclusion, studying Machine Learning at the undergraduate level is an exciting and rewarding choice for those interested in the intersection of technology and data. With its endless possibilities and real-world applications, Machine Learning is a field that is sure to continue making waves in the years to come.
Are you fascinated by the world of computers and how they work? Do you dream of creating the next big app or designing cutting-edge technology? If so, then studying Computer Engineering may be the perfect fit for you! Computer Engineering is a field of study that combines computer science and electrical engineering. It involves designing, developing, and testing computer systems, software, and hardware. This field is constantly evolving, with new innovations and breakthroughs being made every day. One of the most exciting aspects of Computer Engineering is the potential for real-world impact. From developing life-saving medical technology to creating new forms of entertainment, the possibilities are endless. For example, computer engineers played a crucial role in the creation of the first iPhone, which revolutionized the way we communicate and access information. In terms of academic discourse, there are many well-known figures in the field of Computer Engineering. One of the most notable is Alan Turing, who is considered the father of computer science. His work on code-breaking during World War II paved the way for modern computing. Other influential figures include Ada Lovelace, who is credited with writing the first computer program, and Grace Hopper, who helped develop the first programming language. At the undergraduate level, typical majors and modules include programming languages, computer architecture, and digital logic design. Students can also specialize in areas such as cybersecurity, artificial intelligence, and robotics. For example, a student interested in cybersecurity might take courses in cryptography and network security. The potential career paths for Computer Engineering graduates are vast and varied. Graduates can work in industries such as software development, telecommunications, and aerospace. They can also pursue careers in research and development, working on cutting-edge technology. Some notable employers include Google, Apple, and NASA. To succeed in this field, students should have a strong foundation in math and science, as well as a passion for problem-solving. Excellent communication and teamwork skills are also important, as computer engineering projects often require collaboration between different departments. Overall, studying Computer Engineering is an exciting and rewarding path for those with a passion for technology and innovation. So if you're ready to dive into the world of computers and make your mark on the industry, then this may be the perfect field for you!
Are you curious about the field of Computer Science? Do you have a passion for technology and a desire to innovate? If so, studying Computer Science could be the perfect fit for you! Computer Science is a dynamic and fast-paced field that explores the design, development, and application of computer software and hardware. It is a field that is constantly evolving, with new technologies and innovations emerging all the time. One of the most exciting aspects of studying Computer Science is the opportunity to work on projects that have real-world impact. For example, Computer Science has been instrumental in the development of self-driving cars, virtual reality technology, and even the internet itself! There are also many inspiring academic figures in the field of Computer Science, such as Ada Lovelace, who is considered to be the world's first computer programmer, and Grace Hopper, who invented the first compiler for a computer programming language. At the undergraduate level, typical majors and modules include programming languages, algorithms, data structures, and computer architecture. However, there are also many areas of further specialisation, such as artificial intelligence, cybersecurity, and software engineering. For example, you could become an expert in machine learning and work on developing cutting-edge AI technologies. The potential future jobs and roles in Computer Science are vast and varied. You could work as a software engineer, a data scientist, a cybersecurity analyst, or even a game developer. Key industries for prospective future employment include technology, finance, healthcare, and entertainment. Some notable and attractive potential employers from the public and private sectors around the world include Google, Microsoft, Amazon, Apple, and NASA. To succeed in the field of Computer Science, it is helpful to have strong problem-solving skills, attention to detail, and a passion for learning. Additionally, having a background in mathematics or science can be beneficial. In conclusion, studying Computer Science is an exciting and rewarding opportunity for those with a passion for technology and innovation. With a wide variety of potential specialisations and future career paths, there has never been a better time to explore this dynamic field.
Activities
Academic Extensions
Thought Experiments