Article
More like this
Are you a fan of seafood, but concerned about sustainability? Mock meats have already made their way to the forefront of plant-based cuisine, and now faux seafood is taking center stage. From shrimp to tuna to even sushi, innovative companies are using seaweed, plant protein, and other natural flavors to recreate the taste and texture of seafood without harming the oceans. The Culinary Institute of America has even teamed up with a vegan shrimp startup, New Wave Foods, to perfect the flavor of their shellfish substitute. Whether you're a vegetarian or simply looking to reduce your carbon footprint, these plant-based seafood options are worth a taste test.
Soybeans have been used for centuries in Asian cuisine, but American industrialist Henry Ford took soy to the next level in the 1930s. Soy's versatility and ability to grow easily and cheaply in variable conditions make it a staple in many foods, from mayonnaise to biodegradable plastic. Soy proteins and fats have been used to make spongy foods like tofu and to help make processed foods. Soybeans are also a great source of essential amino acids and "good" fats, which can decrease cholesterol and reduce the risk of heart disease. However, the widespread use of soy has led to deforestation and the displacement of farmers and indigenous communities. Learning about the benefits and challenges of soy can help students become more aware consumers and understand the importance of finding ways to use soy humanely and sustainably.
Do you know where your food comes from? In 'The Omnivore's Dilemma: A Natural History of Four Meals', Michael Pollan takes you on a journey from the industrial food complex to foraging in the wild, revealing the hidden costs of our modern food systems. As you follow each food chain, you'll learn how our eating choices impact not only our own health but also the health of the environment. Pollan's insightful exploration of our relationship with food will make you question everything you thought you knew about what's on your plate. Recommended for anyone interested in food systems, environmental sustainability, health, and ethics. This book is relevant to students interested in fields such as agriculture, biology, nutrition, environmental studies, and ethics. It is also relevant to anyone who cares about the impact of their food choices on their health and the health of the planet. The book challenges readers to think critically about the industrial food complex and consider alternative ways of producing and consuming food that prioritize sustainability and ethical considerations.
Did you know that approximately 40% of the global fish catch is discarded as bycatch, unintentionally caught fish that are not the target of the fishing operation? This means that a significant amount of fish, which could be used for food and other purposes, is being wasted. Fortunately, researchers and industry leaders are coming up with innovative solutions to turn bycatch into valuable resources. Bycatch can be transformed into fish meal, used as fertilizer, or even turned into high-end seafood products. One of the leading experts in this field is Dr. Daniel Pauly, a fisheries scientist and professor at the University of British Columbia. Dr. Pauly is known for his work on developing methods to estimate global fish catches, and he has also been a vocal advocate for reducing bycatch and promoting sustainable fishing practices. Another academic making significant contributions in this area is Dr. Karin Limburg, a fisheries biologist and professor at the SUNY College of Environmental Science and Forestry. Dr. Limburg has researched the use of bycatch for fertilizer and has found that it can be a valuable source of nutrients for crops. In addition to these experts, industry leaders such as FishWise, a nonprofit seafood sustainability consultancy, are also working to reduce bycatch and promote sustainable fishing practices. They work with major seafood retailers and distributors to improve the sustainability of the seafood supply chain. By exploring this topic further, you can develop a deeper understanding of the complex issues facing our oceans and contribute to finding innovative solutions for a more sustainable future.
Have you ever considered how the loss of agrobiodiversity affects our food and agriculture? Discover how the standard American diet has evolved in the last 45 years and how our love of cheese has contributed to a whopping 20 additional pounds in total fat we eat each year. Learn about the reduction of diversity in our food supply and how it affects our ability to feed ourselves. Explore the global standard diet and the impact of standardization on our food and taste.
As a student, you might have heard about the importance of reducing your carbon footprint to help combat climate change. One way to do this is by cutting down on the amount of meat you eat. Did you know that approximately 15% of all greenhouse gas emissions from humans come from livestock production? By reducing our meat consumption, we could significantly reduce these emissions. Not only that, meat and dairy production take up a lot of land, around 80% of all farmland! However, not all meat is created equal. Large-scale farming of beef has a particularly high impact, whereas small-scale farming of animals can have a lower environmental footprint. Vegan alternatives can also come with their own set of problems, but a plant-based diet can bring several positive health benefits. By changing how we look at food and eat it sustainably, we could potentially change the world.
Did you know that converting agricultural food waste could provide three times the amount of protein needed to feed every person in the world, every day? A recent paper published in Green Chemistry by researchers from King's College London highlights the potential of waste-to-protein technologies to address global malnutrition, reduce pressure on food supply chains, and fight climate change. By utilizing innovative methods such as fermentation and insect farming, we could produce 197g of protein per person in a day, all while reducing food waste.
In "Animal, Vegetable, Miracle," Barbara Kingsolver and her family embark on a year-long journey to live off food from their own neighborhood, shunning the industrial-food pipeline. This memoir-journalistic investigation hybrid will take you on a thought-provoking adventure, revealing the true meaning of "you are what you eat." Kingsolver's enthralling narrative will open your eyes to the importance of locally sourced food, sustainability, and self-sufficiency. Recommended for environmentalists, foodies, sustainability advocates, and anyone interested in the impact of food on our health and the planet. This book will also appeal to those studying agriculture, ecology, and environmental science. Kingsolver's memoir will inspire readers to rethink their food choices and consider the benefits of locally sourced produce. Additionally, this book will be relevant to those interested in self-sufficiency and homesteading.
Did you know that seaweed could be the answer to global food insecurity and reducing greenhouse gas emissions? Seaweed is not only a dietary staple and carbon soaker, but also holds potential for replacing plastics, animal feed, and biofuels. Researchers from the University of Queensland have mapped out the potential of farming more commercially important seaweed species and estimated that expanding seaweed farming could reduce global agricultural greenhouse gas emissions by up to 2.6 billion tonnes of CO2-equivalent per year. However, careful management is needed to avoid potential ecological impacts.
In "The Soil Will Save Us," Kristin Ohlson argues that the solution to climate change may lie beneath our feet. Thousands of years of poor farming practices and modern agriculture have stripped the world's soils of up to 80% of their carbon, contributing to atmospheric warming. But by adopting ecological approaches that prioritize the health of soil and its microorganisms, we can turn atmospheric carbon into beneficial soil carbon and potentially reverse global warming. Ohlson introduces readers to the visionaries who are figuring out how to build healthy soil and solve problems like drought, erosion, pollution, and food quality. Recommended for environmentalists, farmers, scientists, and anyone interested in sustainable agriculture and combating climate change. Kristin Ohlson's "The Soil Will Save Us" challenges conventional thinking about farming practices and offers a hopeful solution to the climate crisis. The book has particular relevance to those studying ecology, environmental science, and agriculture, as well as those working in fields related to food and sustainability. It highlights the importance of healthy soil and its role in mitigating the effects of climate change, making it a must-read for anyone interested in creating a more sustainable future.
Have you ever heard of growing plants without soil? It's possible with hydroponics and aquaponics! These innovative methods of agriculture have gained popularity in recent years for their ability to produce high yields of fresh produce while using less space, water, and pesticides than traditional farming. In this write-up, we'll explore the fascinating world of hydroponics and aquaponics, diving into the concepts, benefits, and contributions from leading academics in the field. Hydroponics is the practice of growing plants in nutrient-rich water instead of soil. This method can be done in a variety of ways, from a simple jar with water and plant roots to complex systems using pumps, pipes, and controlled environments. Aquaponics takes it a step further by combining hydroponics with fish farming. In this closed-loop system, fish waste provides nutrients for plants, while plants naturally filter and clean the water for the fish. Did you know that hydroponics and aquaponics can yield up to 10 times more produce than traditional farming methods? This is because the plants receive precisely the nutrients they need, and water is recycled efficiently. Additionally, these methods can be done year-round, in any climate, and with less land space. It's no wonder that hydroponics and aquaponics are gaining attention from both commercial farmers and hobbyists alike. One leading academic in this field is Dr. Dickson Despommier, a professor at Columbia University. He's written extensively on vertical farming, an innovative form of agriculture that takes hydroponics to new heights by stacking layers of plants vertically. Another notable academic is Dr. Rakocy from the University of the Virgin Islands, who pioneered the development of modern aquaponics in the 1980s. In conclusion, hydroponics and aquaponics offer an innovative and sustainable solution to traditional farming methods. With its ability to produce more fresh produce with less resources, it's no wonder why this field is gaining traction. By exploring this topic further, you can discover new and exciting ways to apply academic concepts to real-world problems.
Alaskan fisherman Dune Lankard has witnessed the devastating impacts of natural and man-made disasters on his industry and homeland, from earthquakes to oil spills. Now, he's turning to regenerative ocean farming to mitigate the effects of climate change and create a new regenerative economy based on conservation, restoration, and mitigation. This burgeoning concept, developed by Canadian commercial fisherman turned ocean farmer Bren Smith, involves growing seaweed and shellfish in small underwater gardens, and is touted as the new farming model of the future. Explore the fascinating intersection of traditional fishing practices and sustainable ocean farming in this thought-provoking article.
In today's world, it's easy to take for granted the food we eat and where it comes from. However, understanding the complex supply chain behind the fruits and vegetables we purchase can have significant intellectual and practical benefits. In times of crisis, like during the COVID-19 pandemic, supply chains are stretched thin, and it becomes more important than ever to explore alternative ways of growing food. Enter high-tech urban agriculture, a revolutionary concept that could transform the way we produce and consume food. With vertical farms popping up in cities worldwide, growing crops closer to where they are eaten is becoming a reality. These systems provide numerous benefits, from being healthier and more sustainable to containing no pesticides. By exploring these cutting-edge concepts further, students can gain knowledge about sustainable practices, future technologies, and global supply chains.
Agriculture, forestry, and land-use change account for over 25% of global greenhouse gas emissions. A new report identifies the top 25 measures to reduce on-farm emissions and provides concrete guidance for policy makers, agriculture players, and academics to spur the necessary change in the agriculture sector. Discover the challenges and opportunities for the agricultural sector to reduce emissions and contribute to humanity's success during this crucial window for action.
Food waste is a global issue that has serious environmental, economic, and social implications. According to the Food and Agriculture Organization of the United Nations, around one-third of all food produced in the world is lost or wasted, which amounts to 1.3 billion tons of food annually. This staggering amount of waste not only squanders precious resources, but it also exacerbates world hunger and contributes to greenhouse gas emissions. One of the biggest causes of food waste is the mismatch between supply and demand. Supermarkets, restaurants, and households often discard perfectly edible food that is past its "best before" date or not aesthetically pleasing. However, there are innovative solutions that are being developed to address this issue. For instance, some companies are creating food waste apps that connect consumers with nearby restaurants and grocery stores that have surplus food that they would otherwise throw away. Other companies are developing biodegradable packaging to extend the shelf life of perishable goods and reduce food spoilage. Academics have been studying this issue for decades, and their research has helped to shed light on the complexities of food waste. For example, Dana Gunders, a senior scientist at the Natural Resources Defense Council, has been a leading voice in the food waste reduction movement. Her book, "Waste-Free Kitchen Handbook," provides practical tips on how to reduce food waste at home. Another academic, Tristram Stuart, has written extensively on the topic of food waste and is the founder of Feedback, an organization that campaigns to end food waste. Stuart's book, "Waste: Uncovering the Global Food Scandal," is a seminal work that has helped to bring attention to the issue of food waste. In summary, food waste is a pressing global issue that requires urgent attention. By exploring academic topics related to food waste, students can gain a deeper understanding of the problem and become advocates for change. Through reading, reflection, writing, and self-directed projects, students can make a difference and contribute to a more sustainable future.
Did you know that manure and synthetic fertilisers emit more carbon per year than global aviation and shipping combined? A recent study from the University of Cambridge quantified the impact of fertilisers on greenhouse gas emissions, revealing that two-thirds of emissions come from the use of fertilisers, not from production. While fertilisers are crucial for global food security, their carbon emissions urgently need to be reduced. The researchers identified a combination of scalable technological and policy solutions that could reduce fertiliser emissions by as much as 80% without compromising food production. However, the implementation of such methods require various stakeholders to give up certain profits, henceforth requiring a need for a balance to be struck between environmental efforts and economic incentives.
Transform farmland into thriving habitats for nature while hitting UK's climate and biodiversity targets at half the cost? Yes, it's possible! A new study by leading universities shows incentivizing farmers to spare land for habitats is a cost-effective solution.
Food is a fundamental necessity for all living beings, but the way we produce it has a massive impact on the environment. The growing population and increased demand for food have put significant pressure on traditional agriculture to meet global food needs. Biotechnology has emerged as a promising solution for sustainable food production. Biotechnology involves using living organisms or their products to improve agricultural processes. It has revolutionized food production by providing more efficient, sustainable, and eco-friendly ways to grow and distribute food. Biotech innovations have led to the development of genetically modified crops, which can resist pests, diseases, and environmental stresses, and have higher yields. One leading academic in the field is Dr. Pamela Ronald, a plant geneticist at the University of California, Davis. Dr. Ronald's research focuses on improving crop sustainability and resilience to environmental challenges, such as drought and disease. She has discovered genes that allow rice plants to withstand flooding, a common problem in rice-growing regions. This breakthrough has the potential to improve rice yields and food security for millions of people worldwide. Another notable academic is Dr. Zachary Lippman, a plant biologist at Cold Spring Harbor Laboratory in New York. Dr. Lippman's research focuses on improving crop yield and quality using biotechnology. He has developed a tomato plant that can produce three times more fruit than a traditional tomato plant. His research has the potential to reduce food waste and increase food availability. Biotech's impact on sustainable food production extends beyond crop cultivation. For example, biotech companies are developing new plant-based meat alternatives that taste and look like meat but are more sustainable and eco-friendly. One company leading the way in this field is Impossible Foods, which uses biotechnology to produce plant-based meat substitutes that have the same texture and taste as traditional meat, but with a smaller carbon footprint. In conclusion, biotechnology has the potential to transform the way we produce and consume food sustainably. By exploring this topic further and pursuing self-directed projects, high school students can contribute to the global conversation on sustainable food production and help shape a better future for all.
Looking for a way to stabilize dipping crop yields as climates become harsher and unpredictable? Look no further than the ancient and simple technique of planting maslins - a combination of cereals that can include rice, millet, wheat, rye, barley and more - and harvesting them together as one product. Used by farmers across at least 27 countries for over 3,000 years, maslins have been found to yield higher stability under changing conditions and convey many of the ecological benefits of polycultures involving entirely different plant types. Researchers believe that maslins could provide huge benefits across all levels of farming, from subsistence to industrial, particularly in areas already facing challenging climate conditions. Two researchers, Morgan Ruelle and Alex McAlvay, conducted a review of previous work at Cornell University, demonstrating the effectiveness of maslins in experimental trials.
In the year 2039, breakfast may look very different from what we're used to today. With concerns about climate change and sustainability, traditional breakfast foods like meat and cereal may become harder to find. However, there are exciting alternatives on the horizon, such as lab-grown meat and insects, which are cheaper to produce and better for the environment. Urban farming and hydroponics may allow us to grow our own produce in cities, and drones could revolutionize food delivery. As we become more flexible in our work schedules, we may have more time to prioritize breakfast as the most important meal of the day. By exploring these new ideas and concepts, we can expand our knowledge and understanding of the world around us while also benefiting our health and the planet.
Activities
Academic Extensions
Thought Experiments