Article
More like this
Discover why hitting a baseball is one of the most challenging feats in sports. Physics, brain processes, and coordination are all essential factors in achieving success at the plate. With only 150 milliseconds to decide whether to swing and less than 10 milliseconds to connect with the ball, hitters must possess incredible hand-eye coordination and lightning-fast reflexes. Even Michael Jordan couldn't make the transition from basketball to baseball, highlighting just how difficult it is to hit a round baseball with a round bat squarely. Explore the scientific and athletic aspects of baseball and why it remains the national pastime.
Think the bobsled, luge and skeleton events at the Beijing Winter Olympics are all about speed? Think again! In reality, these thrilling events are the ultimate test of physics and the athletes' ability to navigate the complex forces at play. From the transfer of gravitational potential energy into kinetic energy to the impact of air drag, every tiny movement can make a huge difference. So next time you're watching these events, pay close attention to the subtleties at play - you never know what interesting facets of physics you might discover!
Have you ever wondered why time only moves forward, and not backwards? Scientists used to be stumped by this question until they discovered the second law of thermodynamics, which explains why things happen in the order that they do. This law tells us that entropy, or the level of disorder, always increases in a system. For example, a cup that smashes on the floor will never reassemble itself because that would decrease entropy, which goes against the second law. Understanding this law can help us grasp why things happen in a certain order and why time only moves forward. Learning about thermodynamics can also help us understand how things work, from steam engines to the universe itself. So, if you're curious about the world around you and want to explore the fascinating concepts of entropy and thermodynamics, dive in and discover the wonders of science!
Are you passionate about sports and love the thrill of competition? Do you dream of being the next LeBron James, Serena Williams, or Lionel Messi? Then a career as a professional athlete might be the perfect fit for you! As a professional athlete, you will be part of a highly competitive and exciting industry that offers endless opportunities for growth, success, and recognition. Whether you choose to pursue a career in basketball, tennis, soccer, or any other sport, you will be able to showcase your skills, talent, and dedication to millions of fans worldwide. As a professional athlete, your typical duties will include training, practicing, and competing in matches or tournaments. You will also be responsible for maintaining your physical fitness, following a strict diet, and adhering to a rigorous schedule. Depending on your sport, you may also have the opportunity to specialize in a particular area, such as offense or defense, or even become a coach or commentator. To become a professional athlete, you will need to have a combination of natural talent, hard work, and dedication. While there is no specific education or training required to become a professional athlete, most athletes start training at a young age and continue to hone their skills throughout their career. Popular undergraduate programs and majors for aspiring athletes include sports science, kinesiology, and physical education. Helpful personal attributes for a career as a professional athlete include discipline, perseverance, and a strong work ethic. You will also need to be able to work well under pressure and be willing to take risks and push yourself to the limit. In terms of job prospects and longer-term outlook, the professional sports industry is expected to continue to grow and expand in the coming years. Some notable and attractive potential employers from both the public and private sectors include major sports teams, athletic apparel companies, and sports media outlets. Examples of such employers include the Los Angeles Lakers, Nike, and ESPN. So if you're ready to turn your passion for sports into a rewarding and exciting career, then a career as a professional athlete might be just what you're looking for!
Are you curious about how nanowire networks can exhibit short- and long-term memory like the human brain? An international team led by scientists at the University of Sydney has published their findings in the journal Science Advances, paving the way towards replicating brain-like learning and memory in non-biological hardware systems. The study demonstrates how nanotechnology could be used to build a brain-inspired electrical device with neural network-like circuitry and synapse-like signalling. This breakthrough could have real-world applications, such as improving robotics or sensor devices that need to make quick decisions in unpredictable environments. Read the full article to learn more!
Discovering the universe can be a daunting task, but the stories of Henrietta Swan Leavitt, Cecilia Payne-Gaposchkin, and Vera Rubin, three remarkable women astronomers, show us how a love for knowledge and determination can lead to groundbreaking discoveries. Leavitt's Law allowed us to calculate the distance between stars, which led to the realization that the universe was much bigger than previously thought. Payne-Gaposchkin's bold new idea about the composition of stars challenged the current wisdom, and Rubin's discovery of dark matter left us with even more mysteries to explore. Learning about these women's lives is not only intellectually stimulating, but it also highlights the importance of perseverance and courage. Let their stories inspire you to pursue your passions and make your own discoveries.
Imagine being able to learn about the super massive black hole at the center of our Milky Way galaxy, which is 4 million times heavier than our Sun, and discovering that scientists have found a way to detect smaller black holes and neutron stars. Learning about these incredible objects not only expands your knowledge of our universe, but it also challenges your critical thinking and problem-solving skills. By exploring these academic concepts through reading, reflection, writing and self-directed projects, you can gain a deeper understanding of the cosmos and develop important skills that will benefit you in the future.
Medical Physics is an exciting and rapidly developing field that lies at the intersection of physics, engineering, and healthcare. It involves the application of physics and mathematics to the diagnosis and treatment of diseases and disorders, as well as the development of new medical technologies and devices. Medical physicists work in hospitals, research centers, and private industry, and they play a critical role in improving patient care and outcomes. As a medical physicist, you might work on developing and testing new imaging technologies like MRI and CT scans, or you might design and implement radiation therapy treatments for cancer patients. You might also be involved in ensuring the safety and accuracy of medical equipment and procedures, such as ensuring that radiation doses are delivered precisely to the target area. One of the most appealing aspects of a career in Medical Physics is the opportunity to make a real difference in people's lives. For example, medical physicists working in radiation therapy help to design treatments that can target cancer cells with greater accuracy, reducing side effects and improving patient outcomes. Similarly, medical physicists working in imaging can help to develop new techniques that provide better diagnostic information to doctors, leading to earlier and more accurate diagnoses. To become a medical physicist, you typically need a strong background in physics, mathematics, and computer science, as well as specialized training in medical physics. Popular undergraduate programs for aspiring medical physicists include physics, engineering, and applied mathematics. Many medical physicists also pursue graduate degrees in medical physics, which provide specialized training in the field. Medical Physics offers a wide range of potential areas of specializations, including diagnostic imaging, radiation therapy, and nuclear medicine. Medical physicists may also work in related fields such as health physics, biomedical engineering, and medical informatics. Personal attributes that are helpful for a career in Medical Physics include a strong attention to detail, excellent problem-solving skills, and a passion for science and healthcare. Good communication and interpersonal skills are also important, as medical physicists often work closely with doctors, nurses, and other healthcare professionals. Job prospects for medical physicists are generally quite good, with demand expected to grow as new medical technologies are developed and implemented. There are many potential employers in both the public and private sectors, including hospitals, research centers, medical device manufacturers, and government agencies. Some notable examples of potential employers include the National Institutes of Health, the American Cancer Society, and the International Atomic Energy Agency.
Have you ever wondered what causes the weather to change? Do you find yourself glued to the TV or your weather app during a storm? If so, a career in meteorology might be right up your alley. Meteorology is the study of the Earth's atmosphere and the weather patterns that occur within it. Meteorologists use a variety of tools and techniques to collect data on the weather, such as weather balloons, satellites, and radar. They then use this data to create forecasts and models that help us understand and predict weather patterns. As a meteorologist, you could work in a variety of settings, from TV stations to government agencies to research institutions. Some meteorologists specialize in a particular area, such as severe weather or climate change, while others work in related fields like air quality or oceanography. To become a meteorologist, you typically need at least a bachelor's degree in meteorology or a related field like atmospheric science or physics. Some popular undergraduate programs include Penn State's Meteorology program, the Atmospheric Science program at the University of Washington, or the Meteorology and Climatology program at the University of Oklahoma. In addition to a strong educational background, there are several personal attributes that can be helpful in a career in meteorology. These include a strong attention to detail, good communication skills, and the ability to work well under pressure. Job prospects for meteorologists are generally good, with a projected growth rate of 9% over the next decade. Some notable employers in the field include the National Oceanic and Atmospheric Administration (NOAA), the National Weather Service, and private companies like AccuWeather and The Weather Company. So if you have a passion for weather and a desire to understand the forces that shape our planet, a career in meteorology might be just what you're looking for.
From the dizzying heights of tightrope walking, we can learn the secrets of balancing and defying gravity. Sonja Harpstead, a tightrope instructor in New York, explains that posture is the key to success, and lowering your center of gravity towards the wire is crucial. By understanding the physics of the human body, tightrope walkers use rotational inertia to keep their balance and carry a long balancing pole to lower their center of gravity even further. Beyond entertainment, research in this area could have healthcare implications, including detecting early muscle degradation in elderly patients and building strength and balance with physical therapy exercises. Take a step into the physics of tightrope walking today!
Dark matter is a mysterious substance that makes up the majority of our universe. It's invisible, undetectable, and hard to understand, but it's essential to how our universe works. Learning about dark matter can help us understand why visible matter moves the way it does and how everything in our galaxy stays together. You can think of it like the invisible force that holds the crumbs in your coffee cup together as you stir it. Exploring academic topics like dark matter can be challenging, but it's also fascinating and rewarding. By reading, reflecting, and writing about complex concepts like dark matter, you can develop critical thinking skills and expand your knowledge. So don't be afraid to dive into the unknown and explore the mysteries of the universe!
Join physicist Brian Greene on a journey to unravel the mysteries of the universe in "The Elegant Universe." Delve into the world of string theory, where the fabric of space is torn and repaired, and everything in the universe is generated by microscopically tiny loops of energy. Greene masterfully uses metaphor and analogy to make complex concepts accessible and entertaining, bringing us closer to understanding the grand physical principle behind the universe. Recommended for physics enthusiasts, students of astrophysics and cosmology, and anyone curious about the fundamental nature of the universe. The book provides a fascinating exploration of string theory, a theoretical framework that unifies the laws of physics and promises to be the key to the elusive theory of everything. The Elegant Universe offers a refreshingly clear and engaging account of twentieth-century physics' search for a unified theory, making it an excellent resource for anyone interested in the history and philosophy of science. The book's use of metaphor and analogy also makes it accessible to readers with limited scientific background knowledge.
Are you a coffee lover who enjoys a good espresso? Did you know that the way your coffee is ground could affect its taste? In a recent study published in Physics of Fluids by AIP Publishing, researchers from the University of Huddersfield discovered that more finely ground coffee beans actually brew a weaker espresso. They used a mathematical model to explore the role of uneven coffee extraction and found that understanding and preventing uneven extraction could lead to better brews and significant financial savings. Read on to learn more about the science behind your morning caffeine fix!
A team of physicists from Sun Yat-sen University and the China Academy of Engineering Physics has developed a more accurate way to trace the origin of illegally trafficked radioactive materials, improving global security against dirty bombs. By analyzing spent fuel and developing linear equations, they trained an AI network to identify the sources of materials originating from six types of nuclear reactors with 91-95% accuracy.
Video games have come a long way since Pong, and so has the physics behind them. From Mario's jumps to Lara Croft's acrobatics, video game physics brings virtual worlds to life. But how do video game designers make physics so realistic and fun? In the past, video game physics was based on predetermined rules that were programmed into the game. But with the advent of new physics engines, video game designers can now create more realistic environments and objects that react to the player's actions. For example, the popular game series, Grand Theft Auto, uses a physics engine that simulates real-world car collisions and explosions. The physics of video games is not only about creating realistic environments and objects but also about making the game mechanics fun and engaging. For example, the popular game series, Angry Birds, uses physics to create a satisfying feeling when players launch birds at structures and watch them collapse. Similarly, the game Portal uses physics to create unique puzzles where players must use a "portal gun" to manipulate the environment and reach their goal. Physics concepts such as momentum, force, and energy play a big role in video game design. For example, the popular game series, Halo, uses physics to create realistic bullet trajectories and grenade explosions. In addition, video game designers must also take into account the effects of gravity, friction, and air resistance when creating realistic movements and physics-based interactions. One of the leading academics in the field of video game physics is Dr. David Baraff, a researcher at Pixar Animation Studios. Baraff's work has contributed to the development of physics engines used in video games and animation. Another notable figure in the field is Dr. Richard Feynman, a Nobel Prize-winning physicist who inspired the physics-based puzzle game, Quantum Conundrum. In conclusion, the physics of video games is an exciting and growing field that combines science and fun in a unique way. Whether you're interested in game design, animation, or just curious about the science behind your favorite games, the physics of video games is a topic worth exploring.
Are you interested in the science behind figure skating? Elite figure skaters know physics at a visceral level in ways most of us don’t. For example, every twist, turn and leap begins with balance, which relies on keeping your center of mass aligned with a foot on the ice. But it’s not just the center of mass that matters in figure skating, the "moment of inertia" also plays a role. And for jumps, it amounts to three components: how much angular momentum you leave the ice with, how small can you make your moment of inertia in the air, and how much time you can spend in the air. Learn more about the physics of figure skating and the potential for quintuple jumps in the future.
Are you curious about the sun's outermost atmosphere? A team of physicists at Colorado University recruited 1,000 undergraduate students to help solve the mystery of why the sun's corona is so hot. The students examined the physics of over 600 real solar flares and published their findings in The Astrophysical Journal. The study's results suggest that solar flares may not be responsible for superheating the sun's corona, as previously thought. This study is a remarkable feat of data analysis and provides rare opportunities for students to learn about the collaborative and often-messy way that scientific research works in the real world.
Astronomers using the Atacama Cosmology Telescope have confirmed that the universe is 13.77 billion years old, matching the standard model and the Planck satellite's measurements. This adds a fresh twist to the ongoing debate in astrophysics and confirms the reliability of these difficult measurements. Cornell researcher Steve Choi co-authored one of the papers published in the Journal of Cosmology and Astroparticle Physics. Discover the cosmic geometry that led to this groundbreaking discovery and the implications it holds for our understanding of the universe.
Physics is the study of the fundamental laws of nature, from the tiniest subatomic particles to the vast expanse of the universe. It is a field that seeks to understand the world around us and the forces that govern it. Physics is a fascinating and complex field that has a wide range of applications in our daily lives. One of the most exciting aspects of physics is the constant innovation and research that is taking place. From the development of quantum computing to the exploration of dark matter, there is always something new and exciting happening in the world of physics. Some of the most inspiring academic discourse in recent years has come from the likes of Stephen Hawking and Neil deGrasse Tyson, who have made complex physics concepts accessible and understandable to the general public. At undergraduate level, students can expect to study a range of modules, including mechanics, electromagnetism, thermodynamics, and quantum mechanics. These modules provide a solid foundation for further specialisation, such as astrophysics, biophysics, or particle physics. Real-life examples of the applications of physics include the development of medical imaging technologies, the creation of renewable energy sources, and the design of advanced materials for use in space exploration. With a degree in physics, there are a wide range of potential career paths available. Graduates can go on to work in research and development, engineering, finance, or education. Key industries for prospective future employment include aerospace, energy, and technology. Notable employers in these industries include NASA, SpaceX, and Google. To succeed in the field of physics, it is important to have a strong foundation in mathematics and a passion for problem-solving. Other helpful attributes include attention to detail, creativity, and the ability to think critically. With the right skills and interests, a degree in physics can be the start of an exciting and rewarding career.
Get an inside look into the physics of freestyle skiing and snowboarding! Discover how professional skiers create lift-off force and control their rotational momentum mid-air to execute their incredible feats of manoeuvrability. Explore the challenges of incorporating twisting and learn about the crucial role of posture in executing aerial tricks. Join us in uncovering the secrets of landing safely after these jaw-dropping stunts.
Activities
People and Organizations