Article
More like this
Have you ever dreamed of creating intelligent machines that can work alongside humans? If so, a career in robotics might be just the thing for you. Robotics is a rapidly growing field that combines engineering, computer science, and artificial intelligence to design, develop, and maintain machines that can perform complex tasks. From surgical robots that assist doctors in the operating room to drones that deliver packages to your doorstep, the possibilities are endless. As a robotics professional, you'll work on a wide range of exciting projects, such as designing and building robots that can explore space, developing self-driving cars, or creating robots that can assist in disaster relief efforts. You'll need to have strong problem-solving skills and be able to work collaboratively with a team of engineers, software developers, and scientists. The duties of a robotics professional can vary depending on the specific role and industry. Some may specialize in software development, while others may focus on the design and construction of mechanical components. Areas of specialization can include industrial robots, medical robots, military robots, and more. Typically, a robotics professional will need to have a degree in computer science, electrical engineering, or a related field. Some popular undergraduate programs include Robotics Engineering, Computer Science, Electrical Engineering, and Mechatronics. You'll also need to stay up-to-date with the latest advances in robotics, so continuing education and training will be essential throughout your career. Helpful personal attributes for a career in robotics include attention to detail, excellent communication skills, creativity, and the ability to work well under pressure. You'll also need to be curious, adaptable, and passionate about technology. Job prospects in robotics are very strong. The demand for robotics professionals is expected to grow significantly in the coming years, as robots become more commonplace in a wide range of industries. Many notable and attractive potential employers exist both in the public and private sectors, including NASA, Boston Dynamics, Tesla, and Amazon.
Are you fascinated by the idea of creating machines that can think and act like humans? Are you someone who loves to solve complex problems using logic and creativity? If so, a career in Robotics Programming might be the perfect fit for you! Robotics Programming is an exciting field that involves designing and developing intelligent machines that can perform tasks autonomously. From self-driving cars to surgical robots, Robotics Programming has the potential to revolutionize the way we live and work. As a Robotics Programmer, you will be responsible for creating the software that controls robots and enables them to perform specific tasks. You will work closely with engineers and designers to develop algorithms and code that allow robots to perceive their environment, make decisions, and interact with humans. One of the most appealing aspects of a career in Robotics Programming is the opportunity to work on projects that have a real-world impact. For example, you could work on developing robots that assist in disaster relief efforts, or create machines that help people with disabilities perform everyday tasks. There are many different areas of specialisation within Robotics Programming, including machine learning, computer vision, and natural language processing. This means that you can tailor your career to your specific interests and strengths. To become a Robotics Programmer, you will typically need a degree in Computer Science, Electrical Engineering, or a related field. Popular undergraduate programs include Robotics Engineering, Artificial Intelligence, and Computer Science with a focus on Robotics. In addition to technical skills, there are several personal attributes that can be helpful in a career in Robotics Programming. These include creativity, problem-solving skills, attention to detail, and a passion for learning. The job prospects for Robotics Programmers are excellent, with a growing demand for skilled professionals in this field. Some notable employers in the public sector include NASA and the Department of Defense, while private sector companies like Google, Amazon, and Tesla are also actively hiring Robotics Programmers. In the longer term, the outlook for Robotics Programming is extremely promising. As technology continues to advance, the potential applications for Robotics Programming are virtually limitless. So if you're looking for a career that combines creativity, innovation, and real-world impact, Robotics Programming might be just what you're looking for!
Do you have a passion for technology and innovation? Are you fascinated by the idea of creating robots that can perform complex tasks and interact with humans? If so, then the study of Robotics Programming might be the perfect fit for you! Robotics Programming is a field of study that combines computer science, engineering, and mathematics to create intelligent machines that can perform tasks autonomously. From self-driving cars to industrial robots, the applications of robotics programming are endless. One of the most exciting aspects of Robotics Programming is the constant innovation and research that is taking place in the field. From developing new algorithms to improving the efficiency and safety of robots, there is always something new and exciting happening in this field. Some of the most well-known academic figures in Robotics Programming include Sebastian Thrun, who led the development of Google's self-driving car, and Cynthia Breazeal, who created the first social robot, Kismet. At the undergraduate level, students typically study a range of majors and modules, including computer programming, robotics engineering, and artificial intelligence. As students progress in their studies, they can specialize in areas such as human-robot interaction, machine learning, and control systems. The potential future jobs and roles in Robotics Programming are vast and varied. Graduates can work in industries such as manufacturing, healthcare, and entertainment, designing and programming robots that perform specific tasks. Some of the most notable and attractive potential employers in this field include companies like Amazon Robotics, Boston Dynamics, and Tesla. To succeed in Robotics Programming, students should have a strong foundation in mathematics, computer science, and engineering. They should also have excellent problem-solving skills and be able to think creatively to develop innovative solutions. So, if you're ready to join the exciting world of Robotics Programming, start exploring your options today!
Are you fascinated by the idea of robots and how they work? Do you dream of designing and building machines that can think and act like humans? If so, then Robotics Engineering might just be the perfect field of study for you! Robotics Engineering is a thrilling and dynamic field that combines elements of computer science, electrical engineering, and mechanical engineering to create intelligent machines that can perform a wide range of tasks. From self-driving cars to surgical robots, Robotics Engineering has the potential to revolutionize the way we live and work. In recent years, Robotics Engineering has seen some incredible innovations and exciting research breakthroughs. For example, researchers are now developing robots that can learn from their environment and adapt to new situations on the fly. They're also exploring the use of robots in fields like healthcare, where they can assist with surgeries and even help patients recover from injuries. At undergraduate level, students can expect to study a range of modules, including programming, control systems, and machine learning. They may also have the opportunity to specialize in areas like autonomous systems or human-robot interaction. Real-life examples of exciting Robotics Engineering projects include designing and building drones, developing robots for space exploration, and creating robots that can assist with disaster relief efforts. After graduation, Robotics Engineering majors can look forward to a wide range of exciting career opportunities. They may choose to work in industries like manufacturing, healthcare, or aerospace, designing and building robots that can perform complex tasks. They may also go on to work for companies like NASA or Tesla, developing cutting-edge technology that pushes the boundaries of what's possible. To succeed in Robotics Engineering, students should have a strong foundation in math and science, as well as a natural curiosity and passion for technology. They should also be comfortable working with computers and have strong problem-solving skills. So if you're ready to explore the exciting world of Robotics Engineering, then don't hesitate to dive in and start exploring this fascinating field today!
Are you fascinated by the idea of creating machines that can think and act like humans? Do you dream of designing robots that can help people in their daily lives, or explore uncharted territories? If so, then the study of Robotics might be just the thing for you! Robotics is an interdisciplinary field that combines elements of computer science, engineering, mathematics, and physics to create intelligent machines that can perform a wide range of tasks. From manufacturing and transportation to healthcare and entertainment, robots are revolutionizing the way we live and work. Recent years have seen an explosion of research and innovation in Robotics, with breakthroughs in areas such as autonomous vehicles, drones, and humanoid robots. The field is also home to many inspiring academic figures, such as Rodney Brooks, who developed the first autonomous mobile robot, and Cynthia Breazeal, who created the world's first social robot. At the undergraduate level, students typically study a range of modules that cover topics such as robotics design, programming, sensors and actuators, and artificial intelligence. They may also have the opportunity to specialize in areas such as medical robotics, swarm robotics, or human-robot interaction. But what can you do with a degree in Robotics? The possibilities are endless! Graduates may find employment in industries such as manufacturing, healthcare, agriculture, and defense, working for companies like Boston Dynamics, iRobot, or NASA. They may also pursue careers in research and development, or start their own robotics companies. To succeed in this field, you'll need a strong foundation in math and science, as well as excellent problem-solving and critical thinking skills. You should also have a passion for technology and a desire to make a positive impact on the world. So if you're ready to join the exciting world of Robotics, don't hesitate to explore this fascinating field further!
Are you fascinated by technology and the way it can make our lives easier? Do you enjoy being at the forefront of innovation and change? If so, a career in Internet of Things (IoT) might be the perfect fit for you! IoT is a field that involves connecting everyday devices to the internet, allowing them to communicate with each other and with us. This can include anything from smart home appliances to wearable technology and even self-driving cars. The possibilities are endless, and the impact on our daily lives is already significant. As an IoT professional, you will be responsible for designing, developing and implementing these connected devices and systems. You will work with a team of experts to create solutions that are efficient, reliable and user-friendly. Imagine developing a smart thermostat that learns your preferences and adjusts the temperature accordingly or a wearable health monitor that tracks your fitness levels and sends the data to your doctor in real-time. The possibilities are endless! In terms of duties, you will be involved in a range of activities, from research and development to testing and maintenance. You may also choose to specialize in areas such as data analytics, cybersecurity or hardware design. Other related fields include artificial intelligence, robotics, and software engineering. To get started in this exciting field, you will need a strong background in computer science, electrical engineering or a related field. Popular undergraduate programs include computer engineering, electrical engineering, and computer science. Helpful personal attributes include a passion for technology, creativity, problem-solving skills, and attention to detail. The job prospects in IoT are excellent, with a projected growth rate of 25% over the next five years. Some of the most notable potential employers include Amazon, Google, Microsoft, and IBM. However, there are also many opportunities in smaller startups and niche companies. In conclusion, a career in Internet of Things is an exciting and rewarding choice for anyone with a passion for technology and innovation. With the potential to make a real difference in people's lives and a range of exciting opportunities available, it's no wonder that IoT is one of the fastest-growing fields in the tech industry. So why not explore this fascinating field and see where it takes you?
MIT researchers have developed an AR headset, X-AR, that gives the wearer X-ray vision to locate and retrieve hidden items. Using RF signals and RFID tags, the headset directs the user to the hidden object, which shows up as a transparent sphere in the AR interface. X-AR could revolutionize e-commerce warehouses and manufacturing facilities by quickly finding items on cluttered shelves or buried in boxes. The research will be presented at the USENIX Symposium on Networked Systems Design and Implementation.
Are you fascinated by the world of computers and how they work? Do you dream of creating the next big app or designing cutting-edge technology? If so, then studying Computer Engineering may be the perfect fit for you! Computer Engineering is a field of study that combines computer science and electrical engineering. It involves designing, developing, and testing computer systems, software, and hardware. This field is constantly evolving, with new innovations and breakthroughs being made every day. One of the most exciting aspects of Computer Engineering is the potential for real-world impact. From developing life-saving medical technology to creating new forms of entertainment, the possibilities are endless. For example, computer engineers played a crucial role in the creation of the first iPhone, which revolutionized the way we communicate and access information. In terms of academic discourse, there are many well-known figures in the field of Computer Engineering. One of the most notable is Alan Turing, who is considered the father of computer science. His work on code-breaking during World War II paved the way for modern computing. Other influential figures include Ada Lovelace, who is credited with writing the first computer program, and Grace Hopper, who helped develop the first programming language. At the undergraduate level, typical majors and modules include programming languages, computer architecture, and digital logic design. Students can also specialize in areas such as cybersecurity, artificial intelligence, and robotics. For example, a student interested in cybersecurity might take courses in cryptography and network security. The potential career paths for Computer Engineering graduates are vast and varied. Graduates can work in industries such as software development, telecommunications, and aerospace. They can also pursue careers in research and development, working on cutting-edge technology. Some notable employers include Google, Apple, and NASA. To succeed in this field, students should have a strong foundation in math and science, as well as a passion for problem-solving. Excellent communication and teamwork skills are also important, as computer engineering projects often require collaboration between different departments. Overall, studying Computer Engineering is an exciting and rewarding path for those with a passion for technology and innovation. So if you're ready to dive into the world of computers and make your mark on the industry, then this may be the perfect field for you!
Product engineering is a fascinating and dynamic field that combines creative design thinking, advanced technology, and business acumen to produce innovative products that improve our lives. From smartphones to self-driving cars, the field of product engineering has revolutionized the way we live, work, and interact with the world around us. At its core, product engineering involves designing, developing, and refining products to meet the needs of users while ensuring their safety, efficiency, and sustainability. This interdisciplinary field draws on a range of disciplines, including mechanical engineering, electrical engineering, computer science, materials science, and human factors engineering. In recent years, product engineering has seen some exciting research and innovation. For example, 3D printing has transformed the way we prototype and manufacture products, while artificial intelligence and machine learning have enabled us to create smarter, more responsive products. Notable academic figures in the field include Don Norman, who has written extensively on the intersection of design and human behavior, and Clayton Christensen, who coined the term "disruptive innovation" and has had a profound impact on the way we think about product development. At the undergraduate level, students can expect to take a range of courses that cover the fundamentals of product engineering, including design thinking, prototyping, and manufacturing. Typical majors and modules include product design, manufacturing processes, materials science, and computer-aided design. Students can also explore areas of further specialization such as robotics, mechatronics, or product management. Product engineering opens up a wealth of career opportunities, including roles in product design, development, and management, as well as in fields such as quality control, supply chain management, and user experience. Key industries for prospective employment include technology, automotive, and consumer goods, with notable employers such as Apple, Tesla, and Procter & Gamble. To succeed in this field, students should have a strong foundation in science, technology, engineering, and math (STEM), as well as excellent problem-solving skills, attention to detail, and creativity. They should also be able to work well in teams, communicate effectively, and be comfortable with uncertainty and change.
Are you interested in technology and innovation? Do you enjoy solving complex problems and working with cutting-edge devices? Then a career as an IoT Specialist might be the perfect fit for you! IoT, or the Internet of Things, is a field that involves connecting everyday devices to the internet, allowing them to communicate with each other and with us. As an IoT Specialist, you would be responsible for designing and implementing these systems, ensuring that they are secure, efficient, and effective. One of the most appealing aspects of this field is the endless possibilities for innovation. For example, imagine designing a smart home system that automatically adjusts the temperature, lighting, and music based on your preferences. Or creating a wearable device that monitors your health and alerts you if there are any concerns. As an IoT Specialist, your duties might include programming and testing devices, troubleshooting technical issues, and collaborating with other experts to develop new technologies. You might also specialize in a particular area, such as healthcare, transportation, or energy management. To pursue a career in IoT, you will typically need a degree in computer science, electrical engineering, or a related field. Popular undergraduate programs include the Bachelor of Science in Computer Engineering or the Bachelor of Science in Information Technology. Additionally, you may benefit from obtaining certifications in specific IoT technologies or programming languages. Helpful personal attributes for an IoT Specialist include strong problem-solving skills, attention to detail, and creativity. You should also be comfortable working in a fast-paced environment and collaborating with others. Job prospects for IoT Specialists are strong, with many companies seeking professionals with expertise in this area. Potential employers include tech giants such as Google, Amazon, and Microsoft, as well as smaller startups and government agencies. With the growing demand for smart devices and connected technologies, the outlook for this field is bright. So if you're interested in a career that allows you to combine your passion for technology with your desire to make a difference, consider becoming an IoT Specialist. Who knows, you might just be the next innovator to revolutionize the way we interact with the world around us!
Get ready to be inspired by the fascinating world of ants! Researchers, led by Professor L. Mahadevan, have unlocked the secret to how ants work together to perform complex tasks with simple parameters. By observing and mimicking the behavior of black carpenter ants, the team has developed robots, nicknamed RAnts, that can cooperate and complete tasks using simple rules. This groundbreaking research has the potential to solve other complex problems and revolutionize the way we think about teamwork and cooperation.
Can robots that respond to disasters and dangerous situations prompt us to be more prosocial? Research from Stanford Graduate School of Business and the University of Macau reveals that helpful robots don't inspire people and can even demotivate them to help others. Find out why and how this can impact the future of human-robot interaction.
NASA's latest Mars rover, Curiosity, is a marvel of science and engineering. Weighing almost a ton and costing 2.5 billion dollars, it's a bit like a smart car on steroids. But how do you park something like that on Mars? It takes a well-choreographed sequence of Entry, Descent, and Landing (EDL). On August 5th or 6th, Curiosity will hit the Martian atmosphere at nearly twenty times the speed of a bullet. Seven minutes later, it'll be resting on the surface. Past Mars missions have either landed on rockets or bounced to the surface in protective airbags. But Curiosity is so big it requires a new approach. The rockets will take it most of the way down to the surface. Then, a sky crane takes over, easing the rover down on tethers. Once Curiosity is on its wheels, it is free to explore the Martian landscape. This incredible feat of science and engineering showcases the power of human innovation and the potential for exploration beyond our planet.
Unlock the secrets of microscopic processes with microrobots! Researchers at the University of Pennsylvania and University of Ljubljana are using physical intelligence to manipulate colloidal fluids of nematic liquid crystals with magnetically controlled microrobots. This groundbreaking work, published in Advanced Functional Materials, lays the foundation for understanding small-scale interactions and has exciting potential applications in the optical device industry and beyond.
Are you fascinated by the way machines work? Do you love tinkering with gadgets and gizmos? If so, then Mechanical Engineering might be the perfect field of study for you! Mechanical Engineering is a branch of engineering that deals with the design, manufacturing, and maintenance of mechanical systems. It's a broad field that covers everything from tiny micro-machines to massive industrial plants. And the best part? Mechanical engineers are responsible for some of the world's most awe-inspiring inventions! One of the most exciting aspects of Mechanical Engineering is the opportunity to work on cutting-edge research and innovations. For example, did you know that mechanical engineers are currently working on developing new materials that can withstand extreme temperatures and pressures? Or that they're designing robots that can perform tasks too dangerous for humans? The possibilities are endless! At the undergraduate level, you'll typically study a range of modules that cover topics such as mechanics, thermodynamics, and materials science. You'll also have the opportunity to specialize in areas like robotics, aerospace engineering, or renewable energy. And if you're interested in pursuing further education, there are plenty of graduate programs that can help you hone your skills and expertise. So, what kind of jobs can you get with a degree in Mechanical Engineering? The short answer is: almost anything! Mechanical engineers are in high demand across a wide range of industries, including aerospace, automotive, energy, and manufacturing. Some notable employers include NASA, Tesla, and Boeing. And if you're interested in working in the public sector, there are plenty of opportunities in areas like defense and infrastructure. To succeed in Mechanical Engineering, you'll need a strong foundation in math and science, as well as excellent problem-solving skills. You should also be curious, creative, and willing to take risks. But if you're up for the challenge, the rewards can be truly amazing! So, if you're looking for a career that's both challenging and rewarding, consider studying Mechanical Engineering. Who knows? You might just design the next big thing!
Are you fascinated by the idea of machines that can think and learn like humans? Do you want to be at the forefront of technological innovation? Then studying Artificial Intelligence & Machine Learning might be your calling! Artificial Intelligence & Machine Learning is a field of study that focuses on creating intelligent machines that can perform tasks that typically require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. It involves a combination of computer science, mathematics, and statistics. One of the most exciting aspects of this field is the potential for real-life applications. For example, self-driving cars, virtual personal assistants like Siri and Alexa, and facial recognition technology are all examples of AI and machine learning in action. The field of AI & Machine Learning is constantly evolving, with exciting research and innovations happening all the time. Some notable academic figures in the field include Geoffrey Hinton, who developed deep learning algorithms, and Andrew Ng, who co-founded Google Brain and Coursera. At the undergraduate level, typical majors and modules might include programming, data analysis, and machine learning algorithms. There are also many potential areas of further specialisation, such as natural language processing, computer vision, and robotics. If you pursue a degree in AI & Machine Learning, you'll be well-equipped for a range of exciting future jobs and roles. Some key industries for prospective employment include healthcare, finance, and transportation. Companies like Google, Amazon, and Microsoft are all actively hiring for AI and machine learning roles. To succeed in this field, you'll need a strong foundation in math and computer science, as well as an interest in problem-solving and a willingness to keep up with the latest developments in the field. If you're interested in creating cutting-edge technology that has the potential to change the world, then studying Artificial Intelligence & Machine Learning might be the perfect fit for you.
Soft robotics, an emerging field that combines mechanical engineering, materials science, and biology, has been inspired by nature's most unique creatures. One such creature is the jellyfish, which has a mesmerizing propulsion mechanism that allows it to move through water with ease. The jellyfish's propulsion mechanism involves its bell-shaped body contracting and expanding, which generates a vortex ring that propels it forward. Scientists and engineers have taken inspiration from this mechanism to design soft robotic devices that can mimic the jellyfish's movements. One example of such a device is the "Robojelly", a robot developed by researchers at Virginia Tech. It uses a shape-memory alloy to mimic the jellyfish's bell-shaped body and artificial muscles to replicate its propulsion mechanism. Another example is the "Jellyfishbot", a robot developed by researchers at the National University of Singapore. It uses a 3D-printed soft silicone material to mimic the jellyfish's body and a piezoelectric material to generate the propulsion mechanism. These soft robots have the potential to be used for underwater exploration, monitoring ocean environments, and even search and rescue missions. The development of these robots has been made possible by advancements in materials science, which have allowed for the creation of soft and flexible materials with the necessary mechanical properties, and in control systems, which have allowed for the precise control of the robots' movements. Leading academics in the field include John Dabiri, a centennial professor at Caltech who has studied the fluid dynamics of jellyfish propulsion, and Cecilia Laschi, a professor at the Sant'Anna School of Advanced Studies in Italy who has developed soft robotic devices inspired by octopuses and jellyfish. In conclusion, soft robotics inspired by jellyfish propulsion mechanisms has opened up new possibilities for underwater exploration and monitoring. By mimicking the natural movements of these creatures, researchers have developed soft robots that can navigate through water with greater efficiency and agility than traditional robots.
Are you curious about how digital transformation is reshaping businesses and industries worldwide? Check out this fascinating article from MIT Technology Review that explores how digital technologies like AI and robotics are becoming increasingly embedded in key areas of businesses to improve processes, satisfy fluctuating consumer demands, and boost operational resilience. Discover how digital transformation as a service (DTaaS) is emerging as a solutions-led approach to help organizations adapt to a fluctuating business environment and rebuild from the ground up. Read on to learn more about this exciting trend!
Are you fascinated by technology and the limitless possibilities it holds? Do you have a passion for problem-solving and a desire to make a real impact on the world? Look no further than the exciting field of Artificial Intelligence (AI). AI is the study of intelligent agents, which are computer programs that can perform tasks that typically require human intelligence, such as visual perception, speech recognition, decision-making, and language translation. From self-driving cars to virtual personal assistants, AI is transforming the way we live and work. At the forefront of AI research are innovators like Andrew Ng, who co-founded Google Brain and Coursera, and Yoshua Bengio, who won the prestigious Turing Award for his work in deep learning. These academic giants have paved the way for groundbreaking developments in AI, such as natural language processing and computer vision. As an undergraduate in AI, you'll delve into a range of fascinating modules, such as machine learning, robotics, and data mining. You'll also have the opportunity to specialize in areas such as computer vision, natural language processing, and game AI. Imagine creating a robot that can navigate a maze or designing a system that can translate languages in real-time. But what about the future? With a degree in AI, you'll be well-equipped for a range of exciting careers, including data scientist, machine learning engineer, and AI researcher. You could work for tech giants like Google, Facebook, and Amazon, or for cutting-edge startups like OpenAI and DeepMind. And it's not just tech companies that need AI experts - industries like healthcare, finance, and transportation are all looking for talented AI professionals. To succeed in AI, you'll need a strong foundation in mathematics, computer science, and programming. But equally important are skills like critical thinking, problem-solving, and creativity. If you're passionate about technology and driven to make a difference, a degree in AI could be the perfect fit for you.
Are you fascinated by the possibilities of artificial intelligence and machine learning? Do you have a passion for problem-solving and a natural curiosity about the world around you? If so, a career as an AI/ML Engineer might be the perfect fit for you! As an AI/ML Engineer, you'll be at the forefront of one of the most exciting and rapidly growing fields in technology today. You'll work with cutting-edge algorithms and tools to develop intelligent systems that can learn, reason, and make decisions on their own. From self-driving cars to personalized healthcare, the possibilities are endless. Your typical duties as an AI/ML Engineer might include designing and implementing machine learning models, analyzing data to identify patterns and trends, and collaborating with other engineers and data scientists to develop innovative solutions to complex problems. You might specialize in areas like natural language processing, computer vision, or robotics, or work in related fields like data science or software engineering. To prepare for a career in AI/ML engineering, you'll need a strong background in computer science, mathematics, and statistics. Popular undergraduate programs and majors include computer science, mathematics, statistics, and electrical engineering. Helpful personal attributes include a strong work ethic, attention to detail, and a willingness to learn and adapt to new technologies and methodologies. Job prospects for AI/ML Engineers are excellent, with strong demand from both public and private sector employers around the world. Some notable and attractive potential employers include tech giants like Google, Amazon, and Microsoft, as well as cutting-edge startups and research institutions. And with the continued growth of AI and machine learning, the longer-term outlook for this field is very promising indeed. So if you're looking for a career that combines cutting-edge technology, intellectual challenge, and the potential to make a real impact on the world, consider a career as an AI/ML Engineer. The possibilities are endless!
Activities
Academic Extensions
Thought Experiments