Article
More like this
Music is the universal language of mankind, and Harvard scientists have just published the most comprehensive scientific study to date on music as a cultural product, which examines what features of song tend to be shared across societies. Over a five-year period, the team hunted down hundreds of recordings in libraries and private collections of scientists half a world away, and their database, The Natural History of Song, contains nearly 5,000 descriptions of songs from 60 human societies. The team's most ambitious study yet about music was published in Science this week, representing a major international collaboration with musicians, data scientists, psychologists, linguists, and political scientists.
Silence is something that we all need in our lives, yet in today's world, it can feel like there's no space for it. Harriet Shawcross, a filmmaker and journalist, believes that we would all benefit from a little bit more silence in our lives. In her research, she has found that silence can have a positive impact on both the body and the brain. Studies have shown that silence can promote the growth of brain cells in the part of the brain responsible for memory. It can also lower blood pressure, reduce heart rate, and help us relax. Silence can even enable people to say things that they've never been able to say before. However, too much silence can be a bad thing, as it can lead to a feeling of torpor. Overall, silence is something that we should all strive to have more of in our lives, as it can have both intellectual and practical benefits.
Water is one of the most fascinating substances in the universe. Every molecule of water on Earth has existed for billions of years, cycling through rocks, air, animals, and plants. Water doesn't follow the normal rules of chemistry, expanding when it freezes and floating on itself, enabling complex life to survive on our planet. Hot water freezes faster than cold, and water molecules can float upwards, against the force of gravity. This strange behavior has been very useful, allowing oxygen and nutrients to reach the edges of our brain and plants to move water from deep below the ground to nourish their leaves. Our solar system is drowning in water, and where there's water, there could be life. Learning about the properties of water can help students appreciate the remarkable nature of this colorless, featureless, and tasteless substance that breaks so many rules of chemistry.
As students, we're constantly learning about the world around us. But have you ever stopped to consider the existential risks facing humanity? With the invention of the atomic bomb, we gained the power to destroy ourselves for the first time in history. Since then, our existential risk has steadily increased, from the possibility of a global nuclear war to climate change and emerging technologies like engineered pandemics and unaligned AI. While the odds of these risks may seem daunting, it's important to remember that most of the risk is from human action, and it's within human control. By treating safeguarding humanity's future as the defining issue of our time, we can reduce this risk. As students, we have the power to learn about these risks and take action to make a difference. By exploring these topics through reading, reflection, writing, and self-directed projects, we can become informed and empowered to make a positive impact on our future.
Wildfires can have a lasting impact on the ozone layer, a new MIT study shows. Smoke particles from the Australian "Black Summer" megafire triggered a chemical reaction that depleted ozone by 3-5% at mid-latitudes in the southern hemisphere, with effects reaching as far as Antarctica. The study highlights the need to consider the impact of wildfires on ozone recovery efforts and suggests that as long as ozone-depleting chemicals persist in the atmosphere, large fires could spark a reaction that temporarily depletes ozone.
Discover how machine learning is revolutionizing the study of bird migration and conservation, using decades of data from weather radars to predict bird movements and produce migration forecasts across the US. Learn how researchers are training algorithms to identify bird activity and even detect species-specific calls to enhance our understanding of migratory patterns. Explore the intersection of ornithology and machine learning and how it is changing the way we engage with birds.
Unlock Your Brain's Potential: Boost Your Learning Speed by Matching Brainwave Rhythms! Cambridge researchers have discovered that entrainment, a simple technique that matches the brain's natural rhythm, can enhance cognitive skills and support lifelong learning. By syncing with our brain's alpha waves, this technique can triple the learning rate and increase our capacity to absorb new information. The possibilities of brainwave entrainment are endless, from enhancing virtual reality training for pilots and surgeons, to helping children with attentional deficits in the classroom.
Are you interested in learning about the age of microplastics found in the ocean and how they affect the environment? Researchers from Kyushu University and Asahi Kasei Corporation have developed a new method to estimate the age of microplastics found in the upper oceans. By analyzing plastic oxidation levels with environmental factors such as UV exposure and ambient temperature, they found that microplastics in nearshore regions ranged from 0 to 5 years old, whereas microplastics from offshore regions ranged from 1 to 3 years old. Their findings were published in the journal, Marine Pollution Bulletin.
Are you a steak lover looking to grill the perfect steak? Science has some answers! Meat scientists have spent whole careers studying how to produce the tenderest, most flavorful beef possible. From choosing the right cut of meat to the perfect cooking temperature and time, there are many variables to consider. Did you know that the amount of marbling and the composition of fatty acids in the meat affect its flavor? Or that the Maillard reaction creates roasty, nutty flavors that steak aficionados crave? Read on to learn more about the science behind grilling the perfect steak.
As a student, you might have wondered why your experiments didn't go as planned, or you struggled to find answers to your scientific questions. Here's where the scientific method comes in! The scientific method is a step-by-step process used to investigate and solve problems. By following the six steps - ask, research, form a hypothesis, experiment, analyze, and conclude - you can find solutions to your problems and answer your scientific queries. Learning the scientific method not only helps you solve everyday problems but also enhances your critical thinking and analytical skills, which can benefit you in your academic and personal life. Try it out and unleash your inner scientist!
Have you ever wondered how some people seem to effortlessly come up with creative ideas while others struggle to think outside the box? It turns out that there is a scientific explanation behind this phenomenon. The field of neuroscience has been studying the brain's creative processes, and the findings are fascinating. First, let's define creativity. It's not just about making art or music. Creativity is the ability to generate original and useful ideas. It involves thinking divergently, which means thinking beyond what is obvious and exploring many possible solutions to a problem. So, how does the brain generate creative ideas? One theory is that the brain has a default mode network, which is a set of brain regions that become active when the mind is at rest. This network allows the brain to make connections between seemingly unrelated ideas, leading to creative insights. Another theory is that creative thinking is linked to the prefrontal cortex, which is responsible for executive functions such as planning and decision-making. Studies have found that the prefrontal cortex is more active when people are engaged in creative thinking. In addition, research has shown that certain chemicals in the brain, such as dopamine and norepinephrine, play a role in creativity. These chemicals are released when the brain is in a state of arousal, such as during a challenging task or a new experience. Leading academics in the field of neuroscience of creativity include Dr. Rex Jung, who studies the brain basis of creativity and Dr. Mark Beeman, who focuses on insight and creative problem-solving. Innovations in the field include fMRI scans and EEGs, which allow researchers to see the brain in action during creative tasks. In conclusion, the science of creativity is an exciting and rapidly evolving field. By exploring this topic, you can not only improve your own creative abilities but also gain a deeper understanding of the human brain and what makes us unique as a species. So go ahead, unleash your creative brain!
Are you fascinated by the natural world and want to explore the mysteries of the universe? Then the study of Natural Sciences might be the perfect fit for you! Natural Sciences is a broad field of study that encompasses a wide range of scientific disciplines, including biology, chemistry, physics, geology, and astronomy. It is an interdisciplinary field that seeks to understand the natural world and the laws that govern it. One of the most appealing aspects of studying Natural Sciences is the opportunity to make groundbreaking discoveries that can change the world. From the discovery of penicillin by Alexander Fleming to the development of the theory of relativity by Albert Einstein, Natural Sciences has produced some of the most significant innovations in human history. And with new technologies and research methods emerging every day, the possibilities for future discoveries are endless. At the undergraduate level, students can choose from a variety of majors and modules that allow them to specialize in a particular area of Natural Sciences. For example, a biology major might focus on genetics or ecology, while a physics major might specialize in astrophysics or quantum mechanics. And for those who want to take their studies even further, graduate programs in Natural Sciences offer a wide range of research opportunities and specialized areas of study. But what can you do with a degree in Natural Sciences? The answer is almost anything! Graduates of Natural Sciences are highly sought after in a variety of industries, including healthcare, technology, energy, and environmental science. Some of the most notable employers in these industries include NASA, Tesla, and the World Health Organization. To succeed in Natural Sciences, you need to have a curious mind, a passion for discovery, and a strong foundation in math and science. You should also be comfortable with experimentation and problem-solving, as these are the skills that will help you make groundbreaking discoveries and contribute to the advancement of human knowledge. So if you're ready to explore the mysteries of the universe and make a difference in the world, consider studying Natural Sciences. It's a field that offers endless possibilities for discovery and innovation, and it's sure to be a rewarding and fulfilling career path.
As a society, we rely heavily on oil, but this addiction has led to environmental disasters like oil spills. However, nature has a way of cleaning up after us. Microbes, tiny bacteria that evolved to take advantage of oil and gas seeping from the sea floor, have been eating up oil spills for eons. In fact, a big bloom of microbes ate most of the 4.1 million barrels of oil spilt by BP's Macondo well in the Gulf of Mexico. These microbes are not only oil-eaters, but they also eat plastics, making them a potential solution to the Great Pacific Garbage Patch. Scientists are working on enhancing microbes' ability to eat oil and plastic, which could help us clean up our messes faster. Learning about these microbes and how they can benefit us is not only intellectually stimulating, but it also has practical implications for our planet's health.
The ocean is much more than just a beautiful and mysterious body of water that covers over 70% of our planet. It plays a critical role in regulating the Earth's climate and weather patterns, making it an essential aspect of the global ecosystem. In recent years, the impact of human activities, such as increased greenhouse gas emissions and plastic pollution, has had a profound effect on the ocean and its life. Understanding the relationship between the ocean and climate change is crucial to preserving our planet for future generations. One of the most significant ways in which the ocean affects climate change is through its ability to store and release heat. The ocean acts as a "heat sink," absorbing over 90% of the excess heat caused by climate change, helping to regulate the planet's temperature. This process also affects the ocean's currents, which play a crucial role in the global climate system by transporting heat and nutrients around the world. Another critical aspect of the ocean's role in climate change is its ability to absorb carbon dioxide from the atmosphere. The ocean is a natural carbon sink, but as the levels of carbon dioxide in the atmosphere increase, the ocean becomes more acidic, which can have severe consequences for marine life. This process, known as ocean acidification, is a significant concern for scientists and policymakers because it can disrupt the delicate balance of the ocean's ecosystem and cause harm to species that rely on a stable environment to survive. Leading academics in the field, such as Dr. Sylvia Earle and Dr. Jane Lubchenco, have made significant contributions to our understanding of the ocean's role in climate change. Through their research and advocacy, they have helped to raise awareness of the importance of the ocean and its life and the need to protect it for future generations. The ocean is an integral part of our planet's ecosystem, and understanding its role in climate change is essential for preserving our planet and its life for future generations. Get inspired, get informed, and dive into the deep blue!
How do you predict tropical cyclones in a data-scarce region? Olivier Bousquet turned to an unlikely source: sea turtles. Tagged with sensors, these hardy creatures provide ocean data that can predict storm intensity and path. The project, known as STORM, has already produced exciting results, attracting the attention of scientists worldwide. Discover how sea turtles are helping us better understand the ocean and prepare for devastating tropical cyclones.
Have you ever imagined walking alongside a giant, hairy elephant with long tusks and a hump of fat on its back? Meet the woolly mammoth, an extinct species that lived during the Ice Ages. As you learn about the woolly mammoth, you will discover fascinating features such as their two-layered fur and impressive size, which was larger than modern elephants. More than just a fun fact, studying extinct animals like the woolly mammoth can help us understand how Earth's climate and environment have changed over time, and how humans have influenced the planet. By exploring these academic concepts through reading, reflection, writing and self-directed projects, you can develop your intellectual curiosity and creativity while also gaining practical skills in research, critical thinking, and communication.
A team of undergraduate students from Colgate University developed SealNet, a seal facial recognition system that uses deep learning and a convolutional neural network to identify harbor seals. SealNet could be a useful, noninvasive tool for researchers to shed more light on seal behavior, including site fidelity and movements. The software shows promise and could be paired with another photo identification method to identify seals by distinctive markings on their pelage. In the future, an app based on SealNet could allow citizen scientists to contribute to logging seal faces.
Want to know the secret to drought-resistant plants? A group of researchers from Yale, Bates College, University of Maine, Haverford College, and other institutions have discovered that plants with more complex water transport structures are more resistant to droughts, increasing their chances of survival and passing on this trait to their offspring.
The Permian-Triassic extinction event that wiped out 95% of life on Earth serves as a model for studying the current biodiversity crisis. Researchers from the University of Bristol, the California Academy of Sciences, and the China University of Geosciences analyzed marine ecosystems before, during, and after the event to understand the series of events that led to ecological destabilization. They found that the rate of species loss today outpaces that during the Great Dying, and stress the importance of considering functional redundancy in modern conservation strategies.
Have you ever wondered what it would be like to predict the weather? To be the one who knows when to pack an umbrella or when to wear sunscreen? If so, a career in meteorology might be perfect for you! Meteorology is the study of the atmosphere and the weather that occurs within it. This field is fascinating and ever-changing, with new discoveries and advancements being made all the time. Meteorologists use science and technology to analyze data and make predictions about weather patterns, climate change, and severe weather events. As a meteorologist, you'll have the opportunity to work in a variety of different areas. Some meteorologists specialize in forecasting weather for television or radio stations, while others work for government agencies, such as the National Weather Service. You could also work for private companies that require weather predictions, such as airlines or energy companies. To become a meteorologist, you'll typically need a bachelor's degree in meteorology, atmospheric science, or a related field. Popular undergraduate programs include Atmospheric Sciences, Environmental Science, and Physics. It's also important to have a strong background in math and computer science. Helpful personal attributes for a career in meteorology include strong analytical skills, attention to detail, and the ability to work well under pressure. You'll need to be able to communicate complex information in a clear and concise manner, as well as work as part of a team. Job prospects for meteorologists are strong, with opportunities available in both the public and private sectors around the world. Notable employers include the National Oceanic and Atmospheric Administration (NOAA), the European Centre for Medium-Range Weather Forecasts (ECMWF), and the Australian Bureau of Meteorology. In conclusion, a career in meteorology is exciting, challenging, and rewarding. With a passion for science and a desire to make a difference, you could be the next meteorologist to predict the next big weather event. So, if you're interested in the weather and want to make a difference in the world, consider a career in meteorology!