Article
More like this
As we look towards the future, it's clear that our world is changing rapidly. One of the most exciting developments is the emergence of floating nations on the sea. These seascrapers will be built using 3D printed biorock, and will be powered by ocean thermal energy conversion. They will allow us to harvest calcium carbonate directly from seawater, and create vast ocean gardens that will reduce ocean acidity and provide environmentally restorative food. The first to seek jobs on these farms will be the poorest billion on Earth, who will come to the blue frontier because floating societies will require refugees to survive economically. These seasteads will restore the environment, enrich the poor and liberate humanity from politicians. By exploring the depths beneath the ocean, we will unlock new discoveries and opportunities that we can't even imagine yet. So let's embrace this new century of seasteading and explore the oceans first, and the stars next.
Are you passionate about making a positive impact on the world? Do you want to help companies and organizations reduce their environmental footprint and operate in a more sustainable way? If so, then a career as a Sustainability Consultant might be perfect for you! As a Sustainability Consultant, you'll work with a wide variety of clients to identify and implement sustainable practices and solutions. You'll help companies reduce their carbon footprint, conserve resources, and improve their overall environmental performance. You'll also help them comply with regulations and meet sustainability standards. One great thing about being a Sustainability Consultant is that you get to work on a wide range of projects. For example, you might work with a restaurant to help them reduce food waste and switch to more sustainable packaging. Or, you might work with a large corporation to help them implement renewable energy sources and reduce their greenhouse gas emissions. To be successful in this field, you'll need to have a strong understanding of sustainability principles and practices. You'll also need to be able to communicate effectively with clients and stakeholders, and be able to think creatively to come up with innovative solutions. Typical duties for a Sustainability Consultant might include conducting sustainability audits, developing sustainability plans and strategies, conducting research on sustainability issues, and providing training and education to clients and stakeholders. There are many areas of specialization within the field of sustainability consulting, including renewable energy, waste management, sustainable agriculture, and green building. You might also work in related fields such as environmental policy or corporate social responsibility. To become a Sustainability Consultant, you'll typically need a bachelor's degree in a related field such as environmental science, sustainability, or engineering. Some popular undergraduate programs and majors include Environmental Studies, Sustainable Business, and Renewable Energy. Helpful personal attributes for a career in sustainability consulting include strong analytical skills, excellent communication skills, and a passion for sustainability and environmental stewardship. Job prospects for Sustainability Consultants are strong, with many opportunities available in both the public and private sectors. Some notable employers in this field include consulting firms such as Deloitte and PwC, as well as government agencies and non-profit organizations. In conclusion, if you're passionate about sustainability and want to make a positive impact on the world, a career as a Sustainability Consultant might be the perfect fit for you. With a wide range of projects and opportunities available, and a strong job outlook, this is a field worth exploring further!
In "Storms of My Grandchildren," Dr. James Hansen, the preeminent climate scientist, delivers a powerful and urgent message about the looming threat of global warming. With a stark warning that the planet is hurtling towards a climatic point of no return, Hansen calls for immediate and decisive action to phase out coal and achieve a goal of 350 parts per million of carbon dioxide in the atmosphere. This book is a must-read for anyone concerned about the future of our planet and the fate of future generations. Recommended for students of environmental science, policy makers, and anyone interested in the urgent issue of climate change, "Storms of My Grandchildren" provides a comprehensive and compelling overview of the science behind global warming and the political obstacles to addressing it. The book is an important resource for those seeking to understand the dire consequences of inaction, and the urgent need for a groundswell of public support to create a tipping point for change. Hansen's message is clear: we must act now to save our planet and our grandchildren from a catastrophic fate.
As demand for materials like copper and lithium skyrockets with the push for clean energy, companies are eyeing the ocean floor for a new source. But what are the potential consequences for marine life and ecosystems? Learn about the growing controversy and the UN's efforts to regulate deep-sea mining in this thought-provoking article.
The world is constantly changing, and as high school students, it is essential to be aware of the problems that need solutions. Vinisha Umashankar, a 14-year-old from India, noticed the pollution caused by charcoal usage in the metal irons of street vendors and decided to take action. She designed an ironing cart powered by solar energy, eliminating the use of charcoal, deforestation, air pollution, and respiratory diseases caused by the traditional method. Learning about solar energy and sustainable solutions like Vinisha's can benefit you not only intellectually but practically as well. By exploring these concepts further, you can contribute to creating a better world for yourself and the generations to come.
Did you know that human activity can cause earthquakes? In fact, they're becoming more common due to drilling, mining, and other subsurface activities. For example, a 5.1 magnitude earthquake in Spain in 2011 was caused by farmers using underground water for irrigation, which caused a shift in the fault line. The oil and gas industry, geothermal power developers, and dam builders have also caused man-made earthquakes. Learning about the science behind earthquakes is not only intellectually fascinating, but it can also help us understand how to avoid making the problem worse. Earthquakes are one of the most catastrophic natural disasters, and there is currently no way to predict when they will strike. As students, we can take an active role in learning about the impact of human activity on the environment and how we can make a positive difference.
Are you passionate about protecting the environment and making a positive impact on the world? If so, a career in Environmental Engineering might be the perfect fit for you! Environmental Engineers are responsible for designing and implementing solutions to environmental problems. From developing sustainable energy sources to managing waste disposal, Environmental Engineers work to create a healthier and more sustainable planet. One exciting aspect of this field is the opportunity to work on real-life projects that make a difference. For example, an Environmental Engineer might design a water treatment system to provide clean drinking water to a community in need, or develop a plan to reduce greenhouse gas emissions from a factory. Typical duties of an Environmental Engineer include conducting environmental impact assessments, designing and implementing pollution control systems, and managing hazardous waste disposal. There are also many areas of specialisation within the field, such as air quality management, water resource management, and renewable energy. To become an Environmental Engineer, you will typically need a Bachelor's degree in Environmental Engineering or a related field such as Civil Engineering or Chemical Engineering. Popular undergraduate programs include the Bachelor of Science in Environmental Engineering at the University of California, Berkeley, and the Bachelor of Engineering in Environmental Engineering at the University of New South Wales in Australia. Helpful personal attributes for a career in Environmental Engineering include strong problem-solving skills, attention to detail, and a passion for sustainability. You should also be comfortable working with a variety of stakeholders, including government agencies, private companies, and community groups. Job prospects for Environmental Engineers are strong, with a projected growth rate of 8% from 2019 to 2029. There are many attractive potential employers in both the public and private sectors, including government agencies such as the Environmental Protection Agency in the United States, and private companies such as Tesla and Google. So if you're looking for a career that combines your passion for the environment with your love of problem-solving, consider a career in Environmental Engineering. You could be the next person to make a positive impact on our planet!
The UN's Decade on Ecosystem Restoration calls for urgent action to restore freshwater ecosystems. A recent study of Australian stream management highlights the need for collaborative, participatory, and adaptive nature-based solutions. Discover how building communities of practice, implementing nature-based solutions, and allocating more resources for adaptive management can help achieve global goals for ecosystem restoration.
The fashion industry contributes 4% of global greenhouse-gas emissions, emitting as much as France, Germany, and the UK combined. McKinsey research shows that the industry is on track to overshoot its 1.5-degree pathway to mitigate climate change by almost twofold. However, almost 90% of the measures required for accelerated abatement would cost less than $50 per metric ton of GHG emissions abated. Discover how the entire fashion value chain can drive decarbonization and bring about real and lasting change for the better in the industry.
Are you interested in learning about innovative ways to combat climate change and food loss? Check out this article from MIT about a new system that uses passive cooling to preserve food crops and supplement conventional air conditioners in buildings, with no need for power and only a small need for water. The system cleverly combines previous standalone cooling designs to produce significantly more cooling overall, enough to help reduce food losses from spoilage in parts of the world that are already suffering from limited food supplies. Read more about this exciting development in the journal Cell Reports Physical Science.
Have you ever heard of the butterfly effect? It's the idea that small, seemingly insignificant events can have a big impact on the world around us. This concept also applies to our climate. Small changes in weather patterns can lead to big impacts on our planet. One example of this is the El Niño Southern Oscillation (ENSO). ENSO is a natural climate pattern that occurs when the ocean and atmosphere interact in the tropical Pacific. It can cause droughts, floods, and other extreme weather events around the world. In fact, the 1997-1998 El Niño caused $45 billion in damages and over 20,000 deaths. But it's not just natural events that can impact our climate. Human activities like burning fossil fuels and deforestation also contribute to changes in our weather and climate. The emissions from these activities trap heat in the atmosphere, leading to global warming and climate change. One of the leading academics in the field of climate science is Dr. James Hansen. He was one of the first scientists to warn the public about the dangers of climate change back in the 1980s. He has continued to be an advocate for action on climate change and has published numerous papers on the topic. Another important concept in climate science is the feedback loop. A feedback loop occurs when a change in one part of the climate system causes a change in another part of the system, which in turn can cause more changes in the original part. This can lead to amplification or damping of the original change. So what can we do about the butterfly effect on our climate? It starts with small actions we can take in our daily lives, like reducing our carbon footprint and supporting clean energy. But it also requires larger actions from governments and businesses to reduce emissions and invest in renewable energy. Remember, small actions can have a big impact on our climate. So let's work together to make a difference.
Imperial researchers have found that integrating solar and battery power in refugee camps can drastically reduce fuel expenditure and emissions while also boosting the local economy. The system, funded in part by a grant from the UKRI Global Challenges and Research Fund, could provide reliable access to electricity for more people. Find out how this innovative solution can improve the lives of displaced people.
Apple's announcement of using 100% recycled cobalt in its batteries by 2025 highlights the growing concern about the environmental and ethical impacts of mining materials for personal electronics and electric vehicles. However, with the exponential growth of the EV market, there may not be enough recycled materials to meet demand. Explore the challenges and opportunities of battery recycling and the circular economy in this week's newsletter.
Electric vehicles have come a long way since their inception in the late 19th century. While they were once the preferred mode of transportation due to their efficiency and reliability, the high cost of batteries and the discovery of oil reserves led to a decline in their popularity. However, with the growing concern over climate change, electric vehicles are making a comeback. They are now more cost-effective, efficient, and widely available than ever before. Not only do they accelerate faster than gas-powered cars, but they also save drivers money in the long run. With governments around the world focusing on reducing carbon emissions, it's expected that electric vehicles will soon replace gas-powered ones entirely. As a high school student, learning about the history and advancements in electric vehicles can provide valuable insight into the intersection of technology and environmentalism, and inspire you to think about how you can contribute to a sustainable future.
As a high school student, you may have wondered whether we will ever run out of oil. The answer is complex and depends on how you look at it. While there may be trillions of barrels of oil in the earth's crust, it's becoming increasingly difficult and costly to extract. However, technologies such as fracking and melting tar sands are allowing us to access more oil. But even if we don't run out of oil, there are still compelling reasons to move away from it, including climate change, air pollution, and geopolitical tensions. Learning about the science and technology behind oil extraction can help you understand the challenges and opportunities facing our world today. It can also inspire you to think about alternative energy sources and solutions to the problems associated with oil.
Fracking is a technology that extracts natural gas from deep underground. It involves drilling a well and pumping a high-pressure mixture of water and chemicals into the rock to release the gas. Fracking has been a source of controversy due to its impact on the environment, including the potential contamination of drinking water and the release of methane, a potent greenhouse gas. However, natural gas is a cleaner-burning fuel than coal, and fracking has the potential to power us for decades to come. As students, it's important to understand the science and technology behind fracking, as well as the economic and environmental implications. Learning about fracking can help us make informed decisions about our energy use and inspire us to explore alternative, renewable energy sources.
A 1°C temperature rise can cause a tenfold increase in displacement, and a 50mm reduction in rainfall per month can double it. Conflict is a major driver, but displacement itself doesn't cause further conflict. Discover the impact of climate change on vulnerable regions across African drylands and the urgent need for adaptation measures.
Climate change anxiety is a relatively new term, but the fear of the future and the trauma it may bring is not. We are facing an existential fear about our survival, and it is important to understand our impact as human beings on the planet. It is normal to feel anxious about the effects of climate change, but this anxiety can also be a way of digesting the information. As students, it is essential to explore this topic and understand the key concepts of climate change, its impact on our world, and the part we can play in mending the part of the world that is within our reach. Learning about this topic not only benefits us intellectually but also practically as it helps us to make informed decisions about our future and the world we want to live in. Let's embrace the challenge and become part of the solution.
Natural climate solutions offer a way to address both the climate crisis and nature loss, while increasing resilience. Private-sector commitment to climate action is gaining momentum, with companies adopting strategies aimed at reaching net-zero emissions and investing in nature through the purchase of Natural Climate Solutions (NCS)-generated carbon credits. NCS projects could yield nearly a third of the emissions reduction target by 2030, with substantial co-benefits for biodiversity, water quality, and sustainable development. However, challenges remain in ensuring genuinely additional and permanent carbon reductions. Learn about six proposed steps to address these deficiencies.
Southeast Asia's most persistent environmental concern is transboundary haze pollution, caused by peatland forest fires mainly in Indonesia and Malaysia for land clearance. The haze cycle affects public health, business, and tourism, leading to socio-economic impacts, despite ASEAN's initiatives towards transboundary haze-free ASEAN by 2020. The Third Sector Organisations (TSOs) play an increasingly important role in enabling, coordinating and facilitating the efficient implementation of effective strategies to combat the issue.
Activities