Article
More like this
The periodic table may seem like just another table of information, but it is so much more. It is a tool that scientists use to understand the world around us. By organizing all the chemical elements in order by atomic number, the periodic table creates a recurring pattern of properties called the periodic law. This allows us to predict the behavior of elements we haven't even discovered yet! Through the history of the periodic table, we can see how scientific discoveries and technological advancements build upon one another. Learning about the periodic table not only expands your scientific knowledge but also helps you develop analytical and critical thinking skills. By exploring this fascinating topic, you may even be inspired to pursue a career in science and help advance our understanding of the world.
Chocolate is not just an art, it's also a science. Discover how chocolatiers use the complex physics of chocolate to create the perfect texture, taste, and appearance. Learn about the six-phase polymorphic crystal structure of chocolate and how chocolatiers manipulate it through tempering. Explore the similarities between chocolate and carbon and how chocolatiers use their knowledge of physics to regulate the spread of flavor in their creations. Join master chocolatier Richard Tango-Lowy and physicist Joshua Erlich on a journey through the fascinating world of chocolate physics.
Are you a fan of s'mores? Do you want to learn the science behind making the perfect gooey treat? In a quest for perfection, a writer turned to physics and thermodynamics to determine the ideal s'more technique. By considering the heat transfer from marshmallow to chocolate, the writer computed the specific heat and latent heat of melting of both ingredients, and conducted experiments to determine the optimal temperature for the marshmallow. The results? A marshmallow heated to 160°F produces the perfect s'more! This delicious experiment shows that science can be fun and tasty too.
Glass is a material that we use every day, but have you ever wondered how it works? Glass is made from silicon dioxide, which is heated until it becomes a flowing liquid. As it cools, the molecules lose energy and become an amorphous solid, allowing light to pass through without being scattered. The subatomic level of glass is what makes it transparent, as the electrons in glass are spaced far enough apart that visible light can't provide enough energy for them to jump between them. This unique property has made glass an essential material for many uses, from windows to lenses. Understanding the science behind glass can help you appreciate the importance of this material in modern civilization.
Can we develop a mechanical method to detect explosives as effectively as bomb-sniffing dogs? Researchers from MIT Lincoln Laboratory are using a mass spectrometer to measure explosive vapors and understand the requirements for creating an operational explosive detection system that could work in tandem with the canine fleet to improve current airport security systems. The team's research is supported by the Department of Homeland Security's Detection Canine Program and the Next-Generation Explosives Trace Detection program. This innovative research could lead to a faster and more streamlined passenger experience and support the development of technology that remains resilient against evolving security threats
Ready to explore the mind-bending world of quantum physics but don't know where to start? Look no further than Quantum Physics For Dummies! This comprehensive guide breaks down complex concepts into easy-to-understand language, with examples and applications that will leave you feeling like a quantum physics pro. From the Schrodinger Equation to Vector Notation, this book covers all the essentials and prepares you for graduate or professional exams. Get ready to dive into the fascinating world of quantum physics and unlock the secrets of the universe! Recommended for students, scientists, and anyone curious about the mysteries of the universe, Quantum Physics For Dummies is an essential guide to understanding the fundamentals of quantum physics. Whether you're studying physics, engineering, or any other science-related field, this book provides a solid foundation for understanding the principles of quantum mechanics. It's also a great resource for professionals looking to refresh their knowledge or for anyone interested in exploring the cutting-edge of scientific research. With clear explanations and helpful examples, Quantum Physics For Dummies is the perfect introduction to this fascinating field.
Discover the fascinating story of how a broken soda fountain led to the creation of ICEE, the science behind its slushy texture, and the complex chemistry of its flavor syrup. Explore the avalanche-like physics of how ICEE solidifies and the Joules-Thomson effect that makes it puff up. Learn about the inventor, Omar Knedlik, and how his entrepreneurial spirit led to the mass production of his invention, eventually renamed Slurpee by 7-Eleven.
As a student, you might have wondered why your experiments didn't go as planned, or you struggled to find answers to your scientific questions. Here's where the scientific method comes in! The scientific method is a step-by-step process used to investigate and solve problems. By following the six steps - ask, research, form a hypothesis, experiment, analyze, and conclude - you can find solutions to your problems and answer your scientific queries. Learning the scientific method not only helps you solve everyday problems but also enhances your critical thinking and analytical skills, which can benefit you in your academic and personal life. Try it out and unleash your inner scientist!
Are you fascinated by the science behind materials? Do you enjoy exploring and testing the properties of different materials? If so, a career in Materials Engineering might be the perfect fit for you! As a Materials Engineer, you will work to develop and improve the materials used in a wide range of products, from electronics to construction materials. You will use your knowledge of chemistry and physics to analyze the properties of different materials and determine how they can be optimized for specific applications. One exciting aspect of this field is the potential for innovation. For example, Materials Engineers have been instrumental in the development of new materials like graphene, which has the potential to revolutionize industries such as electronics and aerospace. Typical duties in this field include conducting experiments and tests to analyze the properties of materials, designing and developing new materials, and collaborating with other engineers and scientists to improve existing products. There are also many areas of specialization within Materials Engineering, such as biomaterials, nanomaterials, and metallurgy. To become a Materials Engineer, you will typically need a bachelor's degree in Materials Science or a related field. Popular undergraduate programs and majors include Materials Science and Engineering, Chemical Engineering, and Physics. Helpful personal attributes for success in this field include strong analytical skills, attention to detail, and a passion for problem-solving. You should also have excellent communication skills, as you will often be working closely with teams of other engineers and scientists. Job prospects for Materials Engineers are strong, with the Bureau of Labor Statistics projecting a 2% increase in employment from 2019 to 2029. There are many potential employers in both the public and private sectors, including companies like Apple, Boeing, and NASA. In summary, a career in Materials Engineering offers the opportunity to work on cutting-edge projects, develop new and innovative materials, and contribute to a wide range of industries. If you have a passion for science and a desire to make a real impact, this might be the perfect career for you!
Quantum computing is no longer a futuristic concept as researchers from MIT and other institutions have made a major breakthrough in quantum technology. They have developed a new superconducting parametric amplifier that achieves noise squeezing over a broad frequency bandwidth of up to 1.75 gigahertz while maintaining a high degree of squeezing, leading to faster and more accurate quantum systems. This breakthrough has significant implications for multiqubit systems and other metrological applications that demand extreme precision.
Teflon, a material that doesn't stick to anything, was stumbled upon accidentally in 1938 by a chemist named Roy Plunkett. Teflon's properties make it perfect for things that need to be slippery, chemical-resistant, or waterproof, which means it has a lot of applications. It can be found all over the place, from raincoats to industrial ball bearings to artificial joints. The incredible properties of PTFE, the chemical name for Teflon, come from its molecular structure. It's a polymer, meaning it's made of long chains of repeating units of atoms strung together. PTFE has tight carbon-fluorine bonds that ignore the normal, intermolecular forces that help substances stick to each other. Even the famously adhesive feet of geckos usually can't get a grip on it. Learning about the properties of materials like Teflon can inspire independent exploration of science and engineering, which can lead to exciting career opportunities in fields like materials science and chemical engineering.
Researchers at MIT and other institutions have found a way to increase the emission of light from the interaction between photons and electrons by a hundredfold, with potential applications in modern technologies and scientific research.
Unlock the secrets of microscopic processes with microrobots! Researchers at the University of Pennsylvania and University of Ljubljana are using physical intelligence to manipulate colloidal fluids of nematic liquid crystals with magnetically controlled microrobots. This groundbreaking work, published in Advanced Functional Materials, lays the foundation for understanding small-scale interactions and has exciting potential applications in the optical device industry and beyond.
Are you interested in using your creativity and problem-solving skills to make a positive impact on the world? Then a career in chemical engineering might be right up your alley! Chemical engineering is a field that combines knowledge of chemistry, physics, and mathematics to design and develop new products and processes. As a chemical engineer, you could work in a variety of industries, including pharmaceuticals, energy, food and beverage, and more. For example, you might work on developing new medicines to treat diseases, or on designing more efficient and sustainable ways to produce energy. One exciting aspect of chemical engineering is the potential for innovation and discovery. For example, chemical engineers have been instrumental in developing new materials like graphene, which has the potential to revolutionize industries from electronics to transportation. In terms of day-to-day duties, chemical engineers might be involved in everything from designing experiments and analyzing data to overseeing production processes and troubleshooting problems that arise. There are also many areas of specialization within the field, such as materials science, process design, and environmental engineering. To become a chemical engineer, you'll typically need to earn a bachelor's degree in chemical engineering or a related field. Some popular undergraduate programs include the chemical engineering programs at MIT, UC Berkeley, and the University of Texas at Austin. In addition to technical knowledge, there are a few personal attributes that can be helpful in a career in chemical engineering. These include strong problem-solving skills, attention to detail, and the ability to communicate complex ideas clearly and effectively. As for job prospects, chemical engineering is a field with plenty of opportunities for growth and advancement. Some notable employers include companies like Procter & Gamble, ExxonMobil, and DuPont, as well as government agencies like the Environmental Protection Agency and the Department of Energy. In conclusion, if you're interested in using your scientific knowledge to make a difference in the world, a career in chemical engineering might be the perfect fit for you. With plenty of opportunities for innovation and growth, this field offers the chance to make a real impact on society and the environment. So why not explore this exciting career path today?
Did you know that the oldest glue in the world is over 8,000 years old and comes from a cave near the Dead Sea? Ancient people used this glue, made from a mixture of animal bone and plant materials, to waterproof baskets and construct utensils. Today, we have enough types of tape and glue to build and repair almost anything. But have you ever wondered what gives glue and tape their stickiness? Adhesives can be made from synthetic molecules or natural proteins and carbohydrates. In order to work, glue and tape need both adhesive bonds and cohesive bonds. Glue is stronger than tape in terms of absolute strength of adhesive bonds, but no single adhesive works well in all circumstances. Engineers weigh similar factors all the time. Choosing the right glue to withstand the heat inside an engine is a matter of life and death. And though the strength of duct tape's adhesive bonds can't compete with those of epoxy glues, tape does have the advantage of instantaneous stickiness in an emergency. Learning about adhesives can help you understand how things are constructed and repaired, and can even save lives in certain situations.
Unlock the future of electronics with 2D materials! MIT engineers have developed a revolutionary method to fabricate tiny transistors from 2D materials like transition-metal dichalcogenides (TMDs) that conduct electricity better than silicon. The method allows chip manufacturers to grow these materials on existing silicon wafers, preserving their perfect crystalline form. Get ready to catch up to Moore's Law with next-generation electronic devices!
Get an inside look into the physics of freestyle skiing and snowboarding! Discover how professional skiers create lift-off force and control their rotational momentum mid-air to execute their incredible feats of manoeuvrability. Explore the challenges of incorporating twisting and learn about the crucial role of posture in executing aerial tricks. Join us in uncovering the secrets of landing safely after these jaw-dropping stunts.
Are you interested in exploring the world of artificial intelligence (AI) and its impact on our daily lives? Look no further than Stanford University's latest research on energy-efficient memory storage for AI training. In a recent breakthrough, researchers at Stanford found a material that could revolutionize the way we store data using electron spin directions, resulting in faster and more efficient processing. This new memory storage method, known as spin orbit torque magnetoresistive random access memory (SOT-MRAM), could enable AI training on devices like your phone or smartwatch. Check out the full article in Nature Materials to learn more!
Are you ready to explore the cutting-edge world of quantum computing? IBM has announced plans to build a 100,000-qubit machine within the next decade, partnering with the University of Tokyo and the University of Chicago in a $100 million dollar initiative. This technology could potentially tackle pressing problems that no standard supercomputer can solve, opening the door to a swath of classically impossible computing tasks. Don't miss out on this exciting development in the field of quantum computing! Read more about it in the MIT Technology Review.
The future of resource extraction lies in space exploration. Asteroids, leftovers from the formation of the planet 4.5 billion years ago, contain rare and precious materials such as platinum, iron, and nickel. The mining industry on Earth is harmful to the environment and people, but space mining could provide a clean and sustainable alternative. Cheaper space travel is necessary to make asteroid mining profitable, and scientists and economists are working on solutions such as electric spaceships. Once a stable asteroid is secured, space mining and processing equipment can extract valuable materials through a process that uses giant mirrors to focus sunlight and heat up asteroid rock. Even a small percentage of a single asteroid's mass in precious metals could be worth billions of dollars. The benefits of space exploration and asteroid mining are vast, and the possibilities for discovery and innovation are endless.
Activities
Academic Extensions
Thought Experiments