Article
More like this
Understanding the blueprint of life is essential to understanding how our bodies work. DNA, genes, and chromosomes are the building blocks that make up this blueprint. DNA is the most basic level and is made up of nucleotides arranged along a sugar backbone. Genes are long snippets of DNA that contain information about building proteins and are the most basic units of inheritance. Chromosomes are long strands of DNA wrapped around proteins called Histones and contain many genes. The body uses acetylation to control the production of proteins. Understanding these concepts can help you understand how traits are passed down and how the body makes an estimated one million proteins from only twenty thousand genes. Knowing the blueprint of life will help you understand how your body works and give you a foundation for further scientific exploration.
Have you ever wondered what happens to your blood after it's drawn at the doctor's office? Or how doctors diagnose illnesses and diseases? Enter the world of Medical Laboratory Science, where the magic happens behind the scenes. As a Medical Laboratory Scientist, your role is crucial in the healthcare industry. You'll use advanced laboratory techniques and equipment to analyze patient samples, such as blood, tissue, and bodily fluids, to help diagnose and treat diseases. You'll work with a team of healthcare professionals, including doctors and nurses, to provide accurate and timely results that inform patient care. But what makes this career so appealing? For starters, it's a constantly evolving field. With new technologies and discoveries, you'll always be learning and adapting to stay at the forefront of your profession. Plus, you'll have the satisfaction of knowing that your work directly impacts patient outcomes and helps save lives. In terms of duties, Medical Laboratory Scientists can specialize in a variety of areas, such as microbiology, hematology, or immunology. You may also work in related fields, such as research or public health. Typical tasks include analyzing samples, interpreting results, and communicating findings to healthcare providers. To become a Medical Laboratory Scientist, you'll need at least a Bachelor's degree in Medical Laboratory Science or a related field. Popular undergraduate programs include Biology, Chemistry, and Medical Technology. You'll also need to complete a clinical rotation and pass a certification exam. Helpful personal attributes for this career include attention to detail, critical thinking skills, and the ability to work well under pressure. You'll also need strong communication skills to effectively communicate with healthcare providers and patients. Job prospects for Medical Laboratory Scientists are strong, with a projected growth rate of 11% from 2018 to 2028. You can find job opportunities in a variety of settings, including hospitals, clinics, research labs, and government agencies. Notable employers include Mayo Clinic, Quest Diagnostics, and the Centers for Disease Control and Prevention. So if you're interested in a career that combines science, technology, and healthcare, consider exploring the world of Medical Laboratory Science. Who knows - you could be the next person to discover a life-saving breakthrough!
Are you fascinated by the human body and how it works? Do you dream of becoming a doctor and making a difference in people's lives? Then pre-medicine might be the perfect field of study for you! Pre-medicine is a challenging and rewarding field that prepares students for medical school and a career in healthcare. It encompasses a wide range of subjects, from biology and chemistry to anatomy and physiology. Through this field of study, you will gain a deep understanding of the human body and the diseases that affect it. Research in pre-medicine is constantly evolving, with new innovations and breakthroughs being made all the time. For example, recent studies have shown that stem cell therapy may be a promising treatment for a variety of conditions, from heart disease to Parkinson's. Additionally, academic figures like Dr. Anthony Fauci have made significant contributions to the field, particularly in the area of infectious diseases. At the undergraduate level, typical majors and modules include biology, chemistry, and biochemistry. These foundational courses provide a strong basis for further specialization in areas such as neuroscience, pharmacology, or genetics. For example, you could become a specialist in neurology and work with patients who have disorders like Alzheimer's or Parkinson's. The potential career paths for pre-med graduates are vast and varied. Many go on to become doctors, working in fields such as pediatrics, cardiology, or oncology. Others pursue careers in related fields, such as medical research or public health. Notable employers include world-renowned hospitals such as the Mayo Clinic and Johns Hopkins, as well as organizations like the World Health Organization and Doctors Without Borders. To succeed in pre-medicine, it's important to have a strong work ethic, a passion for learning, and excellent communication skills. You should also have a keen interest in science and a desire to make a difference in people's lives. In conclusion, pre-medicine is an exciting and challenging field of study that offers a wealth of opportunities for those who are passionate about healthcare. With a strong foundation in biology and chemistry, you can specialize in a variety of areas and pursue a rewarding career in medicine or related fields. So if you're ready to make a difference in the world, consider studying pre-medicine and joining the ranks of healthcare professionals who are changing lives every day.
Have you ever wondered why a black eye turns blue, then green, then yellow, and finally brown before disappearing? It's all because of your hemoglobin, the compound in red blood cells that brings oxygen to your body. When you get hit, the blow crushes tiny blood vessels called capillaries, and red blood cells ooze out of the broken capillaries into the surrounding tissue. From the outside of your skin, this mass of cells looks bluish-black, which is where we get the term, "black and blue". Learning about hemoglobin and how it works in your body can be fascinating and practical knowledge that can help you understand how your body works. It's an example of how exploring academic topics through reading, reflection, and writing can inspire you to learn more about the world around you.
The history of blood transfusions is a fascinating and important academic concept that can benefit high school students in many ways. Learning about the discovery of blood types and the science behind antibodies and antigens can help students understand the human body and the immune system. Additionally, the practical applications of this knowledge are vast, as blood transfusions have saved countless lives throughout history. By exploring this topic through reading, reflection, and self-directed projects, students can gain a deeper understanding of medical advancements and the impact they have on society. This can also inspire students to pursue careers in medical fields, where they can make a difference in the lives of others. Overall, the history of blood transfusions is a compelling and relatable topic that can encourage students to explore academic concepts independently and engage with the world around them.
Have you ever considered a career in Oncology? As an oncologist, you would be at the forefront of cancer care, helping patients navigate through one of the most challenging times of their lives. Not only would you be making a significant impact on the lives of those affected by cancer, but you would also be part of a field that is constantly evolving and advancing. As an oncologist, you would work with a team of healthcare professionals to diagnose and treat cancer patients. You would be responsible for developing treatment plans, monitoring patients' progress, and providing emotional support to patients and their families. Oncologists also play a vital role in cancer research, helping to develop new treatments and therapies. There are several specializations within the field of oncology, including medical oncology, radiation oncology, and surgical oncology. Medical oncologists focus on using chemotherapy and other medications to treat cancer, while radiation oncologists use radiation therapy to destroy cancer cells. Surgical oncologists, on the other hand, perform surgeries to remove cancerous tumors. To become an oncologist, you will need to complete a medical degree, followed by a residency in oncology. Popular undergraduate programs for aspiring oncologists include biology, chemistry, and pre-med. In addition to formal education, oncologists must possess excellent communication and interpersonal skills, as well as a strong desire to help others. Job prospects for oncologists are excellent, with a growing demand for cancer care worldwide. There are many potential employers in both the public and private sectors, including hospitals, research institutions, and pharmaceutical companies. Notable employers include Memorial Sloan Kettering Cancer Center, MD Anderson Cancer Center, and the National Cancer Institute. In conclusion, a career in oncology is both challenging and rewarding. By pursuing this career, you would be making a significant impact on the lives of cancer patients and their families, while also contributing to the advancement of cancer research and treatment. So if you have a passion for helping others and a desire to make a difference in the world, consider a career in oncology.
Discover the secret behind Gram-negative bacteria's armor-like outer membrane! A new study led by Professor Colin Kleanthous at the University of Oxford sheds light on how bacteria like E. coli construct their outer membrane to resemble body armor, with implications for developing antibiotics.
Are you someone who loves to take care of their skin and is fascinated by the science of it all? Do you have an eye for detail and a passion for helping others look and feel their best? If so, then a career in dermatology might be the perfect fit for you! Dermatology is a branch of medicine that focuses on the diagnosis and treatment of skin, hair, and nail conditions. It's a field that's constantly evolving, with new research and technology being developed all the time. As a dermatologist, you'll have the opportunity to work with patients of all ages, from newborns to the elderly, and help them with a wide range of skin issues. One of the most appealing aspects of a career in dermatology is the variety of conditions you'll encounter. From acne and eczema to skin cancer and psoriasis, no two cases are the same. You'll have the chance to use your expertise to diagnose and treat these conditions, as well as perform cosmetic procedures such as Botox injections and laser hair removal. To become a dermatologist, you'll need to complete extensive education and training. This typically includes a four-year undergraduate degree in a science-related field such as biology or chemistry, followed by four years of medical school. After that, you'll need to complete a residency program in dermatology, which can take up to four years. In addition to a strong academic background, there are certain personal attributes that can be helpful in a career in dermatology. These include excellent communication skills, a compassionate nature, and a strong attention to detail. You'll also need to be comfortable working with patients of all ages and backgrounds, and be able to handle the emotional aspects of the job. The job prospects for dermatologists are excellent, with a strong demand for their services in both the public and private sectors. Some notable potential employers include hospitals, clinics, and private practices. You may also have the opportunity to work in research or academia, helping to develop new treatments and technologies for skin conditions. So if you have a passion for skin care and a desire to make a difference in people's lives, a career in dermatology might be the perfect choice for you. With hard work and dedication, you could be on your way to a fulfilling and rewarding career in this exciting field.
Genome-edited CAR T-cells treated a young patient's incurable T-cell leukaemia, leading to complete remission after just 28 days. Designed and developed by researchers at UCL and GOSH, the treatment represents a cutting-edge approach that paves the way for other new treatments and ultimately better futures for sick children.
Did you know that some viruses are actually good for you? Bacteriophages, or phages for short, are natural enemies of bacteria that can protect our health by killing germs that make us sick. Unlike antibiotics, phages are highly specific and won't harm the good microbes in our bodies. With the rise of antibiotic-resistant infections, pharmaceutical companies are giving phages a second look. In fact, a recent clinical trial showed that they work against antibiotic-resistant ear infections. Researchers are also using them to treat infected wounds in veterans and diabetics and to stop the spread of antibiotic-resistant infections. So, if you're interested in learning more about how these tiny viruses can help us fight disease, read on!
Have you ever wondered how your genes determine your traits and characteristics? Do you have a passion for science and a desire to unravel the mysteries of life? If so, a career in geneticist might be just what you're looking for! Geneticists are scientists who study genes, heredity, and variation in living organisms. They use their knowledge of genetics to understand how traits are passed down from generation to generation, and how genetic mutations can lead to diseases and disorders. One of the most exciting aspects of being a geneticist is the potential to make groundbreaking discoveries that could change the course of medicine and science. For example, geneticists were instrumental in identifying the BRCA1 and BRCA2 genes, which are associated with an increased risk of breast and ovarian cancer. This discovery has led to new treatments and preventative measures for these diseases. As a geneticist, you'll have a variety of duties depending on your area of specialization. Some geneticists work in research labs, conducting experiments and analyzing data. Others work in clinical settings, helping patients to understand their genetic risks and providing counseling and support. There are also geneticists who work in agriculture, conservation, and forensics. To become a geneticist, you'll need to have a strong background in biology, chemistry, and mathematics. Most geneticists have at least a bachelor's degree in a relevant field, such as genetics, biology, or biochemistry. Some may also have a master's or doctoral degree, which can lead to more advanced research and teaching positions. In addition to a strong academic background, there are several personal attributes that can be helpful in a career in genetics. These include a curious and analytical mind, excellent communication skills, and a passion for learning and discovery. The job prospects for geneticists are strong, with a growing demand for their expertise in a variety of industries. Some notable employers of geneticists include pharmaceutical companies like Pfizer and Novartis, research institutions like the National Institutes of Health, and government agencies like the Centers for Disease Control and Prevention. So if you're interested in a career that combines your love of science with the potential to make a real difference in the world, consider becoming a geneticist. Who knows, you might just be the one to make the next groundbreaking discovery!
Stanford University researchers, in collaboration with other institutions, have developed a molecule that prevents the spike protein of the SARS-CoV-2 virus from twisting and infecting cells, including those with new variants. This new type of antiviral therapeutic, called the longHR2\_42 inhibitor, may be delivered via inhaler to treat early infections and prevent severe illness. The team's detailed understanding of the twisted structure of the virus's spike protein allowed them to create a longer molecule that is more effective than previous attempts to block the virus. Their groundbreaking research may lead to a promising solution to combat COVID-19.
The world of science is constantly evolving, and with it comes new discoveries that can benefit humanity. However, there are also risks associated with scientific research, particularly in the field of biotechnology. Gain of function work involves manipulating the DNA of microorganisms to give them new abilities, which can be used in vaccine production and cancer treatments. However, this work also includes engineering superbugs that could cause a global pandemic if they escape from the lab. While virologists argue that this research could help us prepare for future pandemics, critics believe that the risks outweigh the benefits. To minimize the risk of lab leaks, experts suggest creating international databases of leaks, near-misses, and fixes, as well as developing a robust pandemic early warning system. As students, it is important to understand the benefits and risks of scientific research and to be aware of the measures being taken to minimize the risks associated with it.
Ancient Egyptian tombs reveal pots of honey, thousands of years old and still preserved. What makes honey such a special food? The answer lies in its chemical makeup and the alchemy of bees. Honey's longevity and acidic properties lend it medicinal qualities, making it a natural bandage and a barrier against infection for wounds. Discover the magic of honey and its perfect balance of hygroscopic and antimicrobial properties.
Do you have a passion for helping others and a fascination with the human eye? If so, a career in optometry could be the perfect fit for you! Optometrists are healthcare professionals who specialize in diagnosing and treating vision problems and eye diseases. They play a vital role in helping people maintain healthy eyes and clear vision. As an optometrist, you'll have the opportunity to work with patients of all ages, from children to seniors. You'll use state-of-the-art technology to examine patients' eyes and diagnose problems such as nearsightedness, farsightedness, and astigmatism. You'll also be able to detect and treat eye diseases such as glaucoma, cataracts, and macular degeneration. One of the most appealing aspects of a career in optometry is the ability to make a real difference in people's lives. Imagine helping a child see clearly for the first time or saving someone's vision by detecting a serious eye disease early on. Optometrists have the power to improve their patients' quality of life in meaningful ways. In addition to traditional optometry, there are many areas of specialization within the field. Some optometrists choose to focus on pediatric optometry, working with children to ensure they have healthy eyes and clear vision. Others specialize in contact lenses, helping patients find the perfect lenses to fit their unique needs. And still others focus on low vision, working with patients who have severe visual impairments to help them navigate the world around them. To become an optometrist, you'll need to complete a Doctor of Optometry (OD) degree from an accredited optometry school. Popular undergraduate majors for aspiring optometrists include biology, chemistry, and physics. In addition to completing a rigorous academic program, you'll also need to pass a national board exam to become licensed to practice. Helpful personal attributes for a career in optometry include strong communication skills, attention to detail, and a passion for helping others. You'll also need to be comfortable using technology and working with a wide range of patients. Job prospects for optometrists are strong, with a projected growth rate of 10% over the next decade. Optometrists can work in a variety of settings, from private practices to hospitals to retail stores. Some notable employers in the field include LensCrafters, Kaiser Permanente, and the U.S. Department of Veterans Affairs. So if you're looking for a career that combines cutting-edge technology, meaningful patient interactions, and the opportunity to make a real difference in people's lives, consider a career in optometry!
Researchers have identified lipid differences in patients with alcohol-related liver disease that could lead to earlier detection and new treatments. Sphingomyelins were found to be significantly reduced in scarred liver tissue, potentially serving as a biomarker for ALD. Learn more about this breakthrough research and its implications for the diagnosis and treatment of ALD.
Do you have a passion for helping children? Do you want to make a difference in their lives? If so, then a career as a Pediatrician may be perfect for you! Pediatricians are medical doctors who specialize in the care of children, from newborns to teenagers. They play a crucial role in ensuring that children grow up healthy and strong. As a Pediatrician, you will be responsible for diagnosing and treating a wide range of illnesses and injuries that affect children. You will also provide preventive care, such as vaccinations, and help parents and caregivers to understand how to keep their children healthy. One of the most appealing aspects of this career is the opportunity to make a real difference in the lives of children. You may be the one to identify a serious illness early on, saving a child's life. Or you may be the one to help a child overcome a chronic condition, allowing them to thrive and reach their full potential. Pediatricians can specialize in a variety of areas, such as neonatology, cardiology, or oncology. This allows you to focus on the specific needs of your patients and become an expert in your field. To become a Pediatrician, you will need to complete a Bachelor's degree in a relevant field, such as Biology or Chemistry, followed by four years of medical school. After that, you will need to complete a residency program in Pediatrics, which typically lasts three years. In addition to the required education and training, there are certain personal attributes that can be helpful in this career. These include empathy, patience, and excellent communication skills. Job prospects for Pediatricians are excellent, with a projected growth rate of 14% over the next decade. There are a wide range of potential employers, including hospitals, private practices, and government agencies. Some notable employers include Children's Hospital of Philadelphia, Boston Children's Hospital, and St. Jude Children's Research Hospital. In conclusion, a career as a Pediatrician can be incredibly rewarding, both personally and professionally. If you have a passion for helping children and want to make a difference in the world, then this may be the perfect career for you!
Millions of people with IBS and IBD may find relief with Ferrocalm, a natural food supplement containing a friendly strain of live bacteria that has shown in animal models to reduce symptoms during active flare-ups. Developed over 10 years of R&D at the University of Bristol, Ferrocalm aims to alleviate stomach cramps, bloating, diarrhea, and constipation. Clinical trials in patients with inflammatory bowel disease are set for 2024 to test efficacy as a pharmaceutical treatment. Dr. Jenny Bailey, CEO of Ferryx, has spent 15 years researching gut inflammation to find a natural solution to improve quality of life for people who suffer from IBS and other gut conditions.
Singapore's national flower, Papilionanthe Miss Joaquim, has had its entire genetic blueprint decoded, revealing natural products with antioxidant properties and distinctive colors. The study, published in Communications Biology, could lead to future research in gene and metabolite engineering, as well as the discovery of bioactive compounds for healthcare purposes. The collaboration between A\*STAR's Genome Institute of Singapore and SingHealth Duke-NUS Institute of Biodiversity Medicine showcases the power of genetic sequencing technology in preserving and studying Singapore's plant biodiversity.
Severe stress triggers biological age to increase, but it can be reversed. Surgery, pregnancy, and COVID-19 are studied in humans and mice. Researchers found that biological age increased in situations of severe physiological stress but was restored when the stressful situation resolved. This study challenges the concept that biological age can only increase over a person’s lifetime and suggests that it may be possible to identify interventions that could slow or even partially reverse biological age.
Activities