Article
More like this
Frances Oldham Kelsey was a scientist who saved thousands of lives by rejecting an application to sell a drug called thalidomide. The drug was widely used in dozens of countries to treat insomnia, workplace stress, and nausea in pregnant women. However, Kelsey found the data on thalidomide's absorption and toxicity inadequate and rejected the application. Her earlier animal-based research demonstrated that drugs could pass from mother to fetus through the placenta, and she believed that thalidomide could cause harm to fetuses. Her decision to reject the application and ask for better evidence saved countless babies from severe birth defects caused by thalidomide. Kelsey's legacy endures as she prioritized facts over opinions and patience over shortcuts, making evidence-based medicine the foundation of reforms that continue to protect people today. By learning about Kelsey's story, students can understand the importance of evidence-based research and the impact of their decisions in science and medicine.
Are you stressed about aging and the risks it poses to your health? A new study published in Cell Metabolism offers hope. According to Smithsonian Magazine, researchers found that biological age, which is measured by the state of DNA, can be reversed after a stressor subsides. This means that even if stress increases your biological age and raises the risk of certain diseases, it can be reversed once the stress is gone. The study looked at both mice and humans, and the findings are fascinating. Read the full article to learn more about the study's methodology and results.
As we grow older, our bodies undergo many changes, including changes in our metabolism. Metabolism refers to the chemical processes that occur in our bodies to maintain life. These processes are essential for providing energy, building and repairing tissues, and eliminating waste products. As we age, our metabolic pathways can become altered, leading to various age-related diseases and conditions. One example of a metabolic pathway that is affected by aging is the mitochondrial electron transport chain (ETC). The ETC is responsible for producing ATP, the primary source of energy for our cells. As we age, the function of the ETC can become impaired, leading to a decrease in ATP production and an increase in oxidative stress. This can contribute to age-related diseases such as Alzheimer's disease, Parkinson's disease, and diabetes. Another example is the mTOR (mechanistic target of rapamycin) pathway, which regulates cellular growth and metabolism. Studies have shown that inhibiting the mTOR pathway can increase lifespan in various model organisms, including mice. This has led to increased interest in developing drugs that target this pathway as a potential anti-aging strategy. One of the leading academics in this field is Dr. David Sinclair, a Professor of Genetics at Harvard Medical School. Dr. Sinclair's research has focused on the role of metabolism in aging and age-related diseases, and he has made significant contributions to the field. For example, his research has shown that supplementing with NAD+, a molecule involved in energy metabolism, can improve various aspects of aging in mice. Another leading academic in this field is Dr. Valter Longo, a Professor of Gerontology and Biological Science at the University of Southern California. Dr. Longo's research has focused on the role of fasting and caloric restriction in aging and age-related diseases. His work has shown that periodic fasting can have a range of health benefits, including improving insulin sensitivity and reducing inflammation. In conclusion, the study of metabolic pathways in aging is a fascinating and rapidly growing field. By understanding the complex interplay between metabolism and aging, we can better understand the underlying causes of age-related diseases and conditions. Students who are interested in this topic can continue to explore it through reading and research, or by pursuing their own experiments and projects. With the right tools and resources, they can make meaningful contributions to this exciting field and help improve our understanding of aging and metabolic pathways.
UCLA scientists have identified how immune cells detect and respond to cancer cells, leading to better personalized immunotherapies for patients who do not respond to treatment. Checkpoint inhibitors improve T cells' ability to recognize and attack cancer cells, and the study showed that when immunotherapy is effective, it directs a diverse repertoire of T cells against a small group of selected mutations in a tumor. The researchers adapted advanced gene-editing technology to make unprecedented observations about immune responses in patients with metastatic melanoma receiving anti-PD-1 "checkpoint inhibitor" immunotherapy.
HIV, the virus that causes AIDS, is a master of disguise. It can change its outer coat of proteins frequently, making it hard for the immune system to recognise and destroy it. HIV targets Helper T cells, which act as the air traffic controllers of the immune system, coordinating the efforts of other immune cells. If Helper T cells disappear, the whole immune system would have trouble fighting not just HIV but many other illnesses as well. Boosting the immune system against HIV requires getting the Helper T cells back in control. Learning about the immune system and how it works can help you understand how HIV affects the body and how to boost your immune system against it. By exploring this topic through reading, reflection, writing and self-directed projects, you can gain a deeper understanding of the immune system and how to protect yourself from harmful intruders like viruses and bacteria.
A groundbreaking study by the University of Oxford as part of the UK's 100,000 Genomes Project has defined five new subgroups of chronic lymphocytic leukaemia (CLL) and linked these to clinical outcomes, paving the way for more personalized patient care. This is the first study to analyze all the relevant changes in DNA across the entire cancer genome!
Medical research is a fascinating field of study that explores the complexities of the human body and its many diseases. It's an exciting area of research that is constantly evolving, with new discoveries and innovations being made every day. One of the most appealing aspects of medical research is the potential to make a real difference in people's lives. Researchers in this field are at the forefront of developing new treatments and therapies for a wide range of illnesses, from cancer to Alzheimer's disease. One example of groundbreaking research in this field is the development of immunotherapy, a treatment that harnesses the power of the immune system to fight cancer. This innovative approach has already helped to save countless lives and is just one example of the many exciting breakthroughs being made in medical research. At the undergraduate level, students can expect to take a variety of modules that cover topics such as genetics, molecular biology, and epidemiology. These modules provide a solid foundation in the basic principles of medical research and prepare students for further specialisation in areas such as cancer research or infectious diseases. Potential future jobs and roles in medical research include positions as research scientists, clinical trial coordinators, and medical writers. There are also many opportunities to work in public health or in the pharmaceutical industry, with notable employers including the National Institutes of Health, Pfizer, and GlaxoSmithKline. To succeed in this field of study, students should have a strong interest in science and a passion for helping others. They should also possess excellent analytical and critical thinking skills, as well as the ability to work independently and as part of a team. Overall, the study of medical research is an exciting and rewarding field that offers endless possibilities for those who are passionate about making a difference in the world of healthcare.
Organ transplants are a life-saving medical breakthrough that have revolutionized the field of medicine. Kidneys are essential organs that filter waste material from the blood and process it into urine. A typical dialysis patient has a poorer life expectancy than many cancers. Removing one kidney should not affect someone's lifespan or quality of life. A kidney from a living donor in general will have a much better quality because it comes from a healthy and tested person. Kidneys are expected to survive up to twice as long on average in the recipient. Currently, it's not allowed to donate a kidney under any form of payment. However, incentivizing people to donate more is actually a way to starve black markets. It's not to recreate them, it's to undermine them. If you reward a person amply for the sacrifice they've made, something they go into with their eyes open and well informed, that's not exploitation. Organ donation is an incredible gift that can save someone's life so palpably, and everyone should consider donating.
Scientists have developed a groundbreaking treatment for blood cancer using off-the-shelf T-cells. The CALM clinical trial evaluated the potential of UCART19, an "off-the-shelf" CAR-T cell product, against adult patients with B-ALL. The results were recently published in The Lancet Haematology and Cancer Research Communications, showing that 48% of treated patients achieved complete remission lasting an average of 7.4 months. This new approach offers a more efficient and effective alternative to traditional CAR-T cell therapy, providing hope for patients with relapsed or treatment-resistant blood cancers.
Millions of people with IBS and IBD may find relief with Ferrocalm, a natural food supplement containing a friendly strain of live bacteria that has shown in animal models to reduce symptoms during active flare-ups. Developed over 10 years of R&D at the University of Bristol, Ferrocalm aims to alleviate stomach cramps, bloating, diarrhea, and constipation. Clinical trials in patients with inflammatory bowel disease are set for 2024 to test efficacy as a pharmaceutical treatment. Dr. Jenny Bailey, CEO of Ferryx, has spent 15 years researching gut inflammation to find a natural solution to improve quality of life for people who suffer from IBS and other gut conditions.
Horseshoe crabs, a resilient species that has existed for over 450 million years, are facing heightened pressures due to the booming global demand for their blue blood. This blood is the only known natural source of amebocyte lysate, a clotting agent used to detect dangerous endotoxins in a variety of human medical products, including COVID vaccines. The Atlantic horseshoe crab, already considered vulnerable by conservation groups, is facing dwindling numbers due to increased bleedings by biomedical companies. As the industry shifts towards the Atlantic species, questions arise about our obligations to the animals that supply life-saving materials for human benefit.
Genome-edited CAR T-cells treated a young patient's incurable T-cell leukaemia, leading to complete remission after just 28 days. Designed and developed by researchers at UCL and GOSH, the treatment represents a cutting-edge approach that paves the way for other new treatments and ultimately better futures for sick children.
Cancer is a mysterious and deadly disease that claims the lives of 1500 Americans every day. But why is it so common, and why does treatment often fail? In "Cancer: The Evolutionary Legacy", leading researcher Mel Greaves offers clear and convincing answers to these questions by looking at cancer through a Darwinian lens. Greaves argues that human development has trapped us in a nature-nurture mismatch, causing cancer to thrive. With compelling examples from history and modern research, this fascinating book sheds light on the evolutionary context of cancer and its implications for prevention and treatment. Recommended for biology students, medical professionals, and anyone interested in the evolutionary origins of disease, "Cancer: The Evolutionary Legacy" offers a fresh perspective on this complex and elusive disease. With its lucid and engaging style, this book is accessible to readers of all backgrounds and provides a comprehensive overview of cancer research and treatment. Additionally, those interested in the history of medicine and public health will find the compelling examples from history, including the epidemic of scrotal skin cancer in 18th-century chimney sweeps, to be particularly interesting.
Are you fascinated by the human body and how it works? Do you dream of becoming a doctor and making a difference in people's lives? Then pre-medicine might be the perfect field of study for you! Pre-medicine is a challenging and rewarding field that prepares students for medical school and a career in healthcare. It encompasses a wide range of subjects, from biology and chemistry to anatomy and physiology. Through this field of study, you will gain a deep understanding of the human body and the diseases that affect it. Research in pre-medicine is constantly evolving, with new innovations and breakthroughs being made all the time. For example, recent studies have shown that stem cell therapy may be a promising treatment for a variety of conditions, from heart disease to Parkinson's. Additionally, academic figures like Dr. Anthony Fauci have made significant contributions to the field, particularly in the area of infectious diseases. At the undergraduate level, typical majors and modules include biology, chemistry, and biochemistry. These foundational courses provide a strong basis for further specialization in areas such as neuroscience, pharmacology, or genetics. For example, you could become a specialist in neurology and work with patients who have disorders like Alzheimer's or Parkinson's. The potential career paths for pre-med graduates are vast and varied. Many go on to become doctors, working in fields such as pediatrics, cardiology, or oncology. Others pursue careers in related fields, such as medical research or public health. Notable employers include world-renowned hospitals such as the Mayo Clinic and Johns Hopkins, as well as organizations like the World Health Organization and Doctors Without Borders. To succeed in pre-medicine, it's important to have a strong work ethic, a passion for learning, and excellent communication skills. You should also have a keen interest in science and a desire to make a difference in people's lives. In conclusion, pre-medicine is an exciting and challenging field of study that offers a wealth of opportunities for those who are passionate about healthcare. With a strong foundation in biology and chemistry, you can specialize in a variety of areas and pursue a rewarding career in medicine or related fields. So if you're ready to make a difference in the world, consider studying pre-medicine and joining the ranks of healthcare professionals who are changing lives every day.
Discover the secret behind Gram-negative bacteria's armor-like outer membrane! A new study led by Professor Colin Kleanthous at the University of Oxford sheds light on how bacteria like E. coli construct their outer membrane to resemble body armor, with implications for developing antibiotics.
Childhood cancer is a devastating disease that affects thousands of children every year. However, as cancer is more likely to occur in adults rather than children, research on childhood cancer is often underfunded, leading to fewer treatment options and lower survival rates. One of the biggest challenges in treating childhood cancer is the risk of long-term side effects from chemotherapy and radiation. These treatments can cause developmental delays, learning disabilities, and even secondary cancers later in life. As a result, new treatment strategies are being developed to minimize these risks. One of the most promising new approaches is immunotherapy, a type of treatment that harnesses the power of the immune system to attack cancer cells. CAR T-cell therapy, in which T-cells are genetically engineered to recognize and attack cancer cells, has shown particularly promising results in clinical trials. Another challenge in treating childhood cancer is the lack of targeted therapies. Unlike adult cancers, childhood cancers often have no known driver mutations that can be targeted with precision medicine. Researchers are working to identify new drug targets and develop new treatments that can attack cancer cells while sparing healthy cells. Dr. Kimberly Stegmaier, an oncologist and researcher at the Dana-Farber Cancer Institute, is one of the leading experts in childhood cancer research. She and her team are working to identify new drug targets and develop targeted therapies for childhood cancers. They are also studying the genetic and molecular characteristics of childhood cancers to better understand how they develop and how they can be treated. In conclusion, childhood cancer presents unique challenges that require innovative solutions. While underfunded research and the lack of targeted therapies have made progress difficult, recent developments in immunotherapy, such as CAR T-cell therapy, show promising results. As we continue to fight for a cure, let us also remember the children and families affected by this disease and strive to support them in any way we can.
If you're looking for a field of study that is both fascinating and essential to our everyday lives, then look no further than Microbiology! Microbiology is the study of microscopic organisms such as bacteria, viruses, fungi, and algae. It is a field that has a significant impact on our health, food, environment, and much more. One of the most appealing aspects of Microbiology is that it has a direct impact on our daily lives. For example, microbiologists play a critical role in developing vaccines, antibiotics, and other treatments for infectious diseases. They also work to ensure the safety of our food supply by monitoring for harmful bacteria and other microorganisms. In terms of research and innovation, Microbiology is a field that is constantly evolving. There are always new discoveries being made, such as the recent development of CRISPR-Cas9 gene editing technology. Microbiology also has a rich history, with notable figures such as Louis Pasteur and Robert Koch making groundbreaking contributions to the field. At the undergraduate level, students can expect to take courses in areas such as microbial genetics, immunology, and virology. There are also opportunities for further specialization, such as studying environmental microbiology or medical microbiology. Real-life examples of exciting careers in Microbiology include working as a clinical microbiologist, a food microbiologist, or a research scientist. There are a range of potential future jobs and roles that this field of study might be directly helpful for, including working in public health, biotechnology, pharmaceuticals, and more. Notable employers in the field include the Centers for Disease Control and Prevention (CDC), the World Health Organization (WHO), and pharmaceutical companies such as Pfizer and Merck. To succeed in Microbiology, students should have a strong interest in science and a natural curiosity about the world around them. They should also be detail-oriented, analytical, and have excellent problem-solving skills. Overall, studying Microbiology is an exciting and rewarding experience that has the potential to make a real difference in the world. So if you're interested in a field that combines cutting-edge research with practical applications, then Microbiology might just be the perfect fit for you!
Get ready to revolutionize the way we treat cancer and age-related diseases! A new company, GlioQuell, co-founded by Dr. Kambiz Alavian from the Department of Brain Sciences, is developing a cutting-edge approach to target the powerhouses of cancer cells - the mitochondria. By reducing the efficiency of these structures, GlioQuell aims to turn off the cancer cells' energy supply and treat one of the most aggressive forms of cancer - glioblastoma.
Are you someone who loves to take care of their skin and is fascinated by the science of it all? Do you have an eye for detail and a passion for helping others look and feel their best? If so, then a career in dermatology might be the perfect fit for you! Dermatology is a branch of medicine that focuses on the diagnosis and treatment of skin, hair, and nail conditions. It's a field that's constantly evolving, with new research and technology being developed all the time. As a dermatologist, you'll have the opportunity to work with patients of all ages, from newborns to the elderly, and help them with a wide range of skin issues. One of the most appealing aspects of a career in dermatology is the variety of conditions you'll encounter. From acne and eczema to skin cancer and psoriasis, no two cases are the same. You'll have the chance to use your expertise to diagnose and treat these conditions, as well as perform cosmetic procedures such as Botox injections and laser hair removal. To become a dermatologist, you'll need to complete extensive education and training. This typically includes a four-year undergraduate degree in a science-related field such as biology or chemistry, followed by four years of medical school. After that, you'll need to complete a residency program in dermatology, which can take up to four years. In addition to a strong academic background, there are certain personal attributes that can be helpful in a career in dermatology. These include excellent communication skills, a compassionate nature, and a strong attention to detail. You'll also need to be comfortable working with patients of all ages and backgrounds, and be able to handle the emotional aspects of the job. The job prospects for dermatologists are excellent, with a strong demand for their services in both the public and private sectors. Some notable potential employers include hospitals, clinics, and private practices. You may also have the opportunity to work in research or academia, helping to develop new treatments and technologies for skin conditions. So if you have a passion for skin care and a desire to make a difference in people's lives, a career in dermatology might be the perfect choice for you. With hard work and dedication, you could be on your way to a fulfilling and rewarding career in this exciting field.
Severe stress triggers biological age to increase, but it can be reversed. Surgery, pregnancy, and COVID-19 are studied in humans and mice. Researchers found that biological age increased in situations of severe physiological stress but was restored when the stressful situation resolved. This study challenges the concept that biological age can only increase over a person’s lifetime and suggests that it may be possible to identify interventions that could slow or even partially reverse biological age.
Activities
People and Organizations