Article
More like this
Are you fascinated by the science behind materials? Do you enjoy exploring and testing the properties of different materials? If so, a career in Materials Engineering might be the perfect fit for you! As a Materials Engineer, you will work to develop and improve the materials used in a wide range of products, from electronics to construction materials. You will use your knowledge of chemistry and physics to analyze the properties of different materials and determine how they can be optimized for specific applications. One exciting aspect of this field is the potential for innovation. For example, Materials Engineers have been instrumental in the development of new materials like graphene, which has the potential to revolutionize industries such as electronics and aerospace. Typical duties in this field include conducting experiments and tests to analyze the properties of materials, designing and developing new materials, and collaborating with other engineers and scientists to improve existing products. There are also many areas of specialization within Materials Engineering, such as biomaterials, nanomaterials, and metallurgy. To become a Materials Engineer, you will typically need a bachelor's degree in Materials Science or a related field. Popular undergraduate programs and majors include Materials Science and Engineering, Chemical Engineering, and Physics. Helpful personal attributes for success in this field include strong analytical skills, attention to detail, and a passion for problem-solving. You should also have excellent communication skills, as you will often be working closely with teams of other engineers and scientists. Job prospects for Materials Engineers are strong, with the Bureau of Labor Statistics projecting a 2% increase in employment from 2019 to 2029. There are many potential employers in both the public and private sectors, including companies like Apple, Boeing, and NASA. In summary, a career in Materials Engineering offers the opportunity to work on cutting-edge projects, develop new and innovative materials, and contribute to a wide range of industries. If you have a passion for science and a desire to make a real impact, this might be the perfect career for you!
This story of Harry Coover, a chemist during World War II, highlights the importance of persistence and creative thinking in academic pursuits. Coover and his team encountered challenges in their research, but instead of giving up, they looked for alternative uses for the materials they were working with. This led to the creation of super glue, which has saved countless lives in medical settings. This story shows that academic curiosity and perseverance can lead to unexpected discoveries with practical applications. By exploring academic topics through reading, reflection, and self-directed projects, students can develop the skills needed to tackle complex problems and make meaningful contributions to society.
Can we develop a mechanical method to detect explosives as effectively as bomb-sniffing dogs? Researchers from MIT Lincoln Laboratory are using a mass spectrometer to measure explosive vapors and understand the requirements for creating an operational explosive detection system that could work in tandem with the canine fleet to improve current airport security systems. The team's research is supported by the Department of Homeland Security's Detection Canine Program and the Next-Generation Explosives Trace Detection program. This innovative research could lead to a faster and more streamlined passenger experience and support the development of technology that remains resilient against evolving security threats
Glass is a material that we use every day, but have you ever wondered how it works? Glass is made from silicon dioxide, which is heated until it becomes a flowing liquid. As it cools, the molecules lose energy and become an amorphous solid, allowing light to pass through without being scattered. The subatomic level of glass is what makes it transparent, as the electrons in glass are spaced far enough apart that visible light can't provide enough energy for them to jump between them. This unique property has made glass an essential material for many uses, from windows to lenses. Understanding the science behind glass can help you appreciate the importance of this material in modern civilization.
Chocolate is not just an art, it's also a science. Discover how chocolatiers use the complex physics of chocolate to create the perfect texture, taste, and appearance. Learn about the six-phase polymorphic crystal structure of chocolate and how chocolatiers manipulate it through tempering. Explore the similarities between chocolate and carbon and how chocolatiers use their knowledge of physics to regulate the spread of flavor in their creations. Join master chocolatier Richard Tango-Lowy and physicist Joshua Erlich on a journey through the fascinating world of chocolate physics.
Are you fascinated by the world of science and engineering? Do you enjoy exploring the properties of different materials and their potential applications? If so, then studying Materials Science at university undergraduate level might just be the perfect fit for you! Materials Science is an interdisciplinary field that combines the principles of physics, chemistry, and engineering to investigate the properties of different materials and develop new materials with specific properties. This field of study is essential in the development of new technologies, from the creation of lighter and stronger materials for aerospace applications to the development of new medical implants that can better integrate with the human body. One of the most exciting aspects of Materials Science is the wide range of research and innovation that is taking place in this field. From the development of new materials for energy storage and conversion to the creation of biomaterials for use in tissue engineering, there is no shortage of fascinating research topics to explore. At the undergraduate level, Materials Science majors can expect to take a variety of modules that cover topics such as materials characterization, materials processing, and materials design. Students will also have the opportunity to specialize in areas such as nanomaterials, biomaterials, and electronic materials, among others. With a degree in Materials Science, graduates can look forward to a range of exciting career opportunities. Some of the key industries for prospective future employment include aerospace, automotive, electronics, and healthcare. Notable employers in these industries include companies such as Boeing, Tesla, Intel, and Johnson & Johnson, among many others. To succeed in this field of study, students should possess a strong foundation in mathematics and physics, as well as a keen interest in materials science and engineering. Additionally, strong problem-solving skills, attention to detail, and a passion for innovation are all essential attributes for success in this field. So, if you're looking for a challenging and rewarding field of study that combines the principles of science and engineering with real-world applications, then look no further than Materials Science!
The future of resource extraction lies in space exploration. Asteroids, leftovers from the formation of the planet 4.5 billion years ago, contain rare and precious materials such as platinum, iron, and nickel. The mining industry on Earth is harmful to the environment and people, but space mining could provide a clean and sustainable alternative. Cheaper space travel is necessary to make asteroid mining profitable, and scientists and economists are working on solutions such as electric spaceships. Once a stable asteroid is secured, space mining and processing equipment can extract valuable materials through a process that uses giant mirrors to focus sunlight and heat up asteroid rock. Even a small percentage of a single asteroid's mass in precious metals could be worth billions of dollars. The benefits of space exploration and asteroid mining are vast, and the possibilities for discovery and innovation are endless.
Are you interested in using your creativity and problem-solving skills to make a positive impact on the world? Then a career in chemical engineering might be right up your alley! Chemical engineering is a field that combines knowledge of chemistry, physics, and mathematics to design and develop new products and processes. As a chemical engineer, you could work in a variety of industries, including pharmaceuticals, energy, food and beverage, and more. For example, you might work on developing new medicines to treat diseases, or on designing more efficient and sustainable ways to produce energy. One exciting aspect of chemical engineering is the potential for innovation and discovery. For example, chemical engineers have been instrumental in developing new materials like graphene, which has the potential to revolutionize industries from electronics to transportation. In terms of day-to-day duties, chemical engineers might be involved in everything from designing experiments and analyzing data to overseeing production processes and troubleshooting problems that arise. There are also many areas of specialization within the field, such as materials science, process design, and environmental engineering. To become a chemical engineer, you'll typically need to earn a bachelor's degree in chemical engineering or a related field. Some popular undergraduate programs include the chemical engineering programs at MIT, UC Berkeley, and the University of Texas at Austin. In addition to technical knowledge, there are a few personal attributes that can be helpful in a career in chemical engineering. These include strong problem-solving skills, attention to detail, and the ability to communicate complex ideas clearly and effectively. As for job prospects, chemical engineering is a field with plenty of opportunities for growth and advancement. Some notable employers include companies like Procter & Gamble, ExxonMobil, and DuPont, as well as government agencies like the Environmental Protection Agency and the Department of Energy. In conclusion, if you're interested in using your scientific knowledge to make a difference in the world, a career in chemical engineering might be the perfect fit for you. With plenty of opportunities for innovation and growth, this field offers the chance to make a real impact on society and the environment. So why not explore this exciting career path today?
Are you a fan of s'mores? Do you want to learn the science behind making the perfect gooey treat? In a quest for perfection, a writer turned to physics and thermodynamics to determine the ideal s'more technique. By considering the heat transfer from marshmallow to chocolate, the writer computed the specific heat and latent heat of melting of both ingredients, and conducted experiments to determine the optimal temperature for the marshmallow. The results? A marshmallow heated to 160°F produces the perfect s'more! This delicious experiment shows that science can be fun and tasty too.
Teflon, a material that doesn't stick to anything, was stumbled upon accidentally in 1938 by a chemist named Roy Plunkett. Teflon's properties make it perfect for things that need to be slippery, chemical-resistant, or waterproof, which means it has a lot of applications. It can be found all over the place, from raincoats to industrial ball bearings to artificial joints. The incredible properties of PTFE, the chemical name for Teflon, come from its molecular structure. It's a polymer, meaning it's made of long chains of repeating units of atoms strung together. PTFE has tight carbon-fluorine bonds that ignore the normal, intermolecular forces that help substances stick to each other. Even the famously adhesive feet of geckos usually can't get a grip on it. Learning about the properties of materials like Teflon can inspire independent exploration of science and engineering, which can lead to exciting career opportunities in fields like materials science and chemical engineering.
Nanotechnology is a fascinating field of study that explores the science of the very small. Imagine being able to manipulate and control matter at the atomic and molecular level! This is the world of nanotechnology. It is a highly interdisciplinary field that combines physics, chemistry, biology, and engineering to create new materials, devices, and systems that have the potential to revolutionize our world. One of the most exciting aspects of nanotechnology is the potential for new and innovative products that can improve our lives in countless ways. For example, scientists are currently researching how to use nanotechnology to develop new drug delivery systems, create more efficient solar panels, and even build tiny robots that can be used for medical purposes. Some of the most inspiring academic discourse in nanotechnology has come from researchers like Richard Smalley, who won the Nobel Prize in Chemistry for his work on carbon nanotubes, and Sumio Iijima, who discovered the first carbon nanotubes. Their groundbreaking research has paved the way for countless other scientists to explore the possibilities of nanotechnology. If you're interested in studying nanotechnology at the undergraduate level, you can expect to take courses in subjects like nanomaterials, nanoelectronics, and nanobiotechnology. You'll also have the opportunity to specialize in areas like nanomedicine or nanophotonics, depending on your interests. The potential career paths for someone with a degree in nanotechnology are vast and varied. You could work in industries like electronics, energy, or healthcare, developing new products and technologies that could change the world. Some specific examples of potential employers include Intel, IBM, and General Electric. To succeed in the field of nanotechnology, you'll need a strong background in science and math, as well as excellent critical thinking and problem-solving skills. You'll also need to be creative and innovative, as the field is constantly evolving and new discoveries are being made all the time. If you're interested in exploring the world of nanotechnology further, there's no better time to start than now. With so much potential for innovation and discovery, it's an exciting field that is sure to inspire and challenge you for years to come.
Unlock the future of electronics with 2D materials! MIT engineers have developed a revolutionary method to fabricate tiny transistors from 2D materials like transition-metal dichalcogenides (TMDs) that conduct electricity better than silicon. The method allows chip manufacturers to grow these materials on existing silicon wafers, preserving their perfect crystalline form. Get ready to catch up to Moore's Law with next-generation electronic devices!
Have you ever wondered what lies beyond the pages of a closed book? Imagine being able to see the words on the pages without ever opening the cover. This is the exciting concept behind the technology developed by a group at MIT. Using terahertz waves, they can now read through closed books and uncover the hidden information inside. To do this, they had to overcome a series of challenges including the need for a radiation source that can penetrate the paper, the ability to distinguish between different pages, and the recognition of characters that are partially hidden. Learning about these academic concepts not only expands your knowledge of science and technology but also opens up new possibilities for studying antique documents and other important materials. Take the first step towards exploring the unseen world and discover the thrill of uncovering hidden information.
The periodic table may seem like just another table of information, but it is so much more. It is a tool that scientists use to understand the world around us. By organizing all the chemical elements in order by atomic number, the periodic table creates a recurring pattern of properties called the periodic law. This allows us to predict the behavior of elements we haven't even discovered yet! Through the history of the periodic table, we can see how scientific discoveries and technological advancements build upon one another. Learning about the periodic table not only expands your scientific knowledge but also helps you develop analytical and critical thinking skills. By exploring this fascinating topic, you may even be inspired to pursue a career in science and help advance our understanding of the world.
Are you interested in exploring the world of artificial intelligence (AI) and its impact on our daily lives? Look no further than Stanford University's latest research on energy-efficient memory storage for AI training. In a recent breakthrough, researchers at Stanford found a material that could revolutionize the way we store data using electron spin directions, resulting in faster and more efficient processing. This new memory storage method, known as spin orbit torque magnetoresistive random access memory (SOT-MRAM), could enable AI training on devices like your phone or smartwatch. Check out the full article in Nature Materials to learn more!
Are you aware that over 2 billion people globally drink water contaminated with disease-causing microbes? Stanford University and SLAC National Accelerator Laboratory have developed a low-cost, recyclable powder that can kill thousands of waterborne bacteria per second when exposed to ordinary sunlight. This discovery could be a significant breakthrough for the nearly 30 percent of the world's population without access to safe drinking water. The results of their study are published in Nature Water.
MIT physicists have observed a resonance in colliding ultracold molecules for the first time, shedding light on the mysterious forces that drive molecules to chemically react. The team found that a cloud of super-cooled sodium-lithium (NaLi) molecules disappeared 100 times faster than normal when exposed to a very specific magnetic field, indicating that the magnetic field tuned the particles into a resonance, driving them to react more quickly than they normally would. These findings suggest that scientists could one day harness particles’ natural resonances to steer and control certain chemical reactions.
Unlock the secrets of microscopic processes with microrobots! Researchers at the University of Pennsylvania and University of Ljubljana are using physical intelligence to manipulate colloidal fluids of nematic liquid crystals with magnetically controlled microrobots. This groundbreaking work, published in Advanced Functional Materials, lays the foundation for understanding small-scale interactions and has exciting potential applications in the optical device industry and beyond.
Sharks may have a key to the future of soft robotics and medical implants. Physicists have discovered how sharks' spiral-shaped intestines work, which led them to 3D print models of the structures to study their fluid dynamics. They found that the soft, elastic materials led to faster fluid flow in one direction, contrary to a basic physics theorem. This discovery could inspire the development of soft robots and medical devices that can deform in different ways, just like an octopus.
Electricity is a fundamental part of modern life, but could too much of it be harmful? Understanding the movement of electric charges and resulting electromagnetic radiation is key to answering this question. While some radiation, like UV light and X-rays, can be dangerous, most of the radiation emitted by human technology, such as mobile phones and household appliances, is harmless. However, some studies have suggested possible long-term harm from constant exposure to weak electromagnetic radiation. The debate surrounding this issue highlights the importance of reliable scientific studies and responsible communication of findings. Learning about the effects of electromagnetic radiation can help students make informed decisions about their technology use and contribute to ongoing scientific research.
Activities