Article
More like this
Discover the secrets behind the remarkable hydrodynamic performance of shark skin and how it's inspiring the design of bioinspired robots and materials!
Can we develop a mechanical method to detect explosives as effectively as bomb-sniffing dogs? Researchers from MIT Lincoln Laboratory are using a mass spectrometer to measure explosive vapors and understand the requirements for creating an operational explosive detection system that could work in tandem with the canine fleet to improve current airport security systems. The team's research is supported by the Department of Homeland Security's Detection Canine Program and the Next-Generation Explosives Trace Detection program. This innovative research could lead to a faster and more streamlined passenger experience and support the development of technology that remains resilient against evolving security threats
Are you fascinated by the Earth's natural wonders and the forces that shape our planet? Do you enjoy problem-solving and critical thinking? If so, then Geological Engineering might be the perfect field of study for you! Geological Engineering is a branch of engineering that focuses on the study of the Earth's materials, structures, and processes. This interdisciplinary field combines elements of geology, engineering, and mathematics to solve complex problems related to the Earth's resources, natural hazards, and environmental sustainability. One of the most exciting aspects of Geological Engineering is its real-world applications. From designing safe and efficient mines to mitigating the impact of natural disasters, Geological Engineers play a crucial role in shaping our world. For example, Geological Engineers are involved in the construction of tunnels and dams, the exploration and extraction of oil and gas reserves, and the development of renewable energy sources such as geothermal and hydroelectric power. Geological Engineering is also a field of constant innovation and discovery. Recent research has focused on developing new methods for detecting and monitoring earthquakes, predicting volcanic eruptions, and understanding the long-term effects of climate change on the Earth's geology. Some of the most well-known academic figures in this field include Charles Darwin, who studied geology during his voyage on the HMS Beagle, and Marie Tharp, who created the first comprehensive map of the ocean floor. At the undergraduate level, students in Geological Engineering typically take courses in geology, physics, chemistry, and mathematics, as well as specialized courses in topics such as mineralogy, petrology, and structural geology. Students may also have the opportunity to participate in fieldwork and research projects, gaining hands-on experience in the field. After graduation, there are a wide range of potential career paths for Geological Engineers. Some may choose to work in the mining industry, designing and managing mining operations around the world. Others may work in environmental consulting, helping to assess the impact of human activities on the Earth's natural systems. Still others may work in government agencies, such as the United States Geological Survey or the National Oceanic and Atmospheric Administration, where they can contribute to important research and policy decisions. To succeed in Geological Engineering, students should have a strong foundation in mathematics and science, as well as excellent critical thinking and problem-solving skills. A passion for the Earth's natural systems and a desire to make a positive impact on the world are also important qualities for success in this field. So if you're ready to explore the fascinating world of Geological Engineering, start researching universities and programs today! With a degree in this field, you'll be well-prepared for a rewarding and impactful career in a variety of industries around the world.
Get an inside look into the physics of freestyle skiing and snowboarding! Discover how professional skiers create lift-off force and control their rotational momentum mid-air to execute their incredible feats of manoeuvrability. Explore the challenges of incorporating twisting and learn about the crucial role of posture in executing aerial tricks. Join us in uncovering the secrets of landing safely after these jaw-dropping stunts.
Nanotechnology is a fascinating field of study that explores the science of the very small. Imagine being able to manipulate and control matter at the atomic and molecular level! This is the world of nanotechnology. It is a highly interdisciplinary field that combines physics, chemistry, biology, and engineering to create new materials, devices, and systems that have the potential to revolutionize our world. One of the most exciting aspects of nanotechnology is the potential for new and innovative products that can improve our lives in countless ways. For example, scientists are currently researching how to use nanotechnology to develop new drug delivery systems, create more efficient solar panels, and even build tiny robots that can be used for medical purposes. Some of the most inspiring academic discourse in nanotechnology has come from researchers like Richard Smalley, who won the Nobel Prize in Chemistry for his work on carbon nanotubes, and Sumio Iijima, who discovered the first carbon nanotubes. Their groundbreaking research has paved the way for countless other scientists to explore the possibilities of nanotechnology. If you're interested in studying nanotechnology at the undergraduate level, you can expect to take courses in subjects like nanomaterials, nanoelectronics, and nanobiotechnology. You'll also have the opportunity to specialize in areas like nanomedicine or nanophotonics, depending on your interests. The potential career paths for someone with a degree in nanotechnology are vast and varied. You could work in industries like electronics, energy, or healthcare, developing new products and technologies that could change the world. Some specific examples of potential employers include Intel, IBM, and General Electric. To succeed in the field of nanotechnology, you'll need a strong background in science and math, as well as excellent critical thinking and problem-solving skills. You'll also need to be creative and innovative, as the field is constantly evolving and new discoveries are being made all the time. If you're interested in exploring the world of nanotechnology further, there's no better time to start than now. With so much potential for innovation and discovery, it's an exciting field that is sure to inspire and challenge you for years to come.
Have you ever looked up at the stars and wondered what lies beyond our planet? Are you fascinated by the mysteries of the universe and the possibility of life on other planets? Then the study of Space Exploration may be the perfect field for you. Space Exploration is a dynamic and exciting field that combines science, technology, and engineering to explore the vast unknowns of outer space. From the first moon landing to the exploration of Mars, this field has led to some of the most groundbreaking discoveries in human history. One of the most appealing aspects of Space Exploration is the potential for discovering new planets, moons, and even life. The study of astrobiology, for example, focuses on the search for life beyond Earth and the conditions necessary for life to exist. This field has led to the discovery of potential habitable planets and has sparked the imagination of scientists and the public alike. At the undergraduate level, students can expect to study a range of topics, including astronomy, astrophysics, and aerospace engineering. These modules will provide students with a strong foundation in the science and technology necessary to explore space. Students can also specialize in areas such as space policy, space law, and space medicine. Some of the most inspiring research in Space Exploration has been conducted by academic figures such as Neil Armstrong, Buzz Aldrin, and Sally Ride. These pioneers have made significant contributions to the field, from landing on the moon to conducting groundbreaking research on the effects of space travel on the human body. With a degree in Space Exploration, graduates can pursue a range of exciting careers. They may work for government agencies such as NASA or private companies such as SpaceX. Potential roles include aerospace engineer, astrophysicist, and mission specialist. Other popular careers include science journalism and science education. To succeed in this field, students should have a strong interest in science and technology, as well as excellent problem-solving and analytical skills. They should also be able to work well in teams and have a passion for exploration and discovery. Overall, the study of Space Exploration is an exciting and rewarding field that offers endless possibilities for discovery and innovation. Whether you dream of exploring new planets or conducting groundbreaking research, this field has something for everyone.
Are you ready to explore the exciting future of human spaceflight? The International Space Station (ISS), a symbol of global collaboration and human ability, will end in eight years. But don't be sad, it could herald a new era of space exploration. The ISS project began in 1998 and has seen dozens of countries work together to build the largest human-built construction in space. Thousands of scientific experiments have been conducted on the ISS, and now new commercial space stations will take its place. Read more about the ISS's legacy and what the future of space exploration holds in this fascinating article from BBC.
Discover the fascinating story of how a broken soda fountain led to the creation of ICEE, the science behind its slushy texture, and the complex chemistry of its flavor syrup. Explore the avalanche-like physics of how ICEE solidifies and the Joules-Thomson effect that makes it puff up. Learn about the inventor, Omar Knedlik, and how his entrepreneurial spirit led to the mass production of his invention, eventually renamed Slurpee by 7-Eleven.
Teflon, a material that doesn't stick to anything, was stumbled upon accidentally in 1938 by a chemist named Roy Plunkett. Teflon's properties make it perfect for things that need to be slippery, chemical-resistant, or waterproof, which means it has a lot of applications. It can be found all over the place, from raincoats to industrial ball bearings to artificial joints. The incredible properties of PTFE, the chemical name for Teflon, come from its molecular structure. It's a polymer, meaning it's made of long chains of repeating units of atoms strung together. PTFE has tight carbon-fluorine bonds that ignore the normal, intermolecular forces that help substances stick to each other. Even the famously adhesive feet of geckos usually can't get a grip on it. Learning about the properties of materials like Teflon can inspire independent exploration of science and engineering, which can lead to exciting career opportunities in fields like materials science and chemical engineering.
Are you interested in using your creativity and problem-solving skills to make a positive impact on the world? Then a career in chemical engineering might be right up your alley! Chemical engineering is a field that combines knowledge of chemistry, physics, and mathematics to design and develop new products and processes. As a chemical engineer, you could work in a variety of industries, including pharmaceuticals, energy, food and beverage, and more. For example, you might work on developing new medicines to treat diseases, or on designing more efficient and sustainable ways to produce energy. One exciting aspect of chemical engineering is the potential for innovation and discovery. For example, chemical engineers have been instrumental in developing new materials like graphene, which has the potential to revolutionize industries from electronics to transportation. In terms of day-to-day duties, chemical engineers might be involved in everything from designing experiments and analyzing data to overseeing production processes and troubleshooting problems that arise. There are also many areas of specialization within the field, such as materials science, process design, and environmental engineering. To become a chemical engineer, you'll typically need to earn a bachelor's degree in chemical engineering or a related field. Some popular undergraduate programs include the chemical engineering programs at MIT, UC Berkeley, and the University of Texas at Austin. In addition to technical knowledge, there are a few personal attributes that can be helpful in a career in chemical engineering. These include strong problem-solving skills, attention to detail, and the ability to communicate complex ideas clearly and effectively. As for job prospects, chemical engineering is a field with plenty of opportunities for growth and advancement. Some notable employers include companies like Procter & Gamble, ExxonMobil, and DuPont, as well as government agencies like the Environmental Protection Agency and the Department of Energy. In conclusion, if you're interested in using your scientific knowledge to make a difference in the world, a career in chemical engineering might be the perfect fit for you. With plenty of opportunities for innovation and growth, this field offers the chance to make a real impact on society and the environment. So why not explore this exciting career path today?
Unlock the secrets of microscopic processes with microrobots! Researchers at the University of Pennsylvania and University of Ljubljana are using physical intelligence to manipulate colloidal fluids of nematic liquid crystals with magnetically controlled microrobots. This groundbreaking work, published in Advanced Functional Materials, lays the foundation for understanding small-scale interactions and has exciting potential applications in the optical device industry and beyond.
Have you ever wondered what lies beyond the pages of a closed book? Imagine being able to see the words on the pages without ever opening the cover. This is the exciting concept behind the technology developed by a group at MIT. Using terahertz waves, they can now read through closed books and uncover the hidden information inside. To do this, they had to overcome a series of challenges including the need for a radiation source that can penetrate the paper, the ability to distinguish between different pages, and the recognition of characters that are partially hidden. Learning about these academic concepts not only expands your knowledge of science and technology but also opens up new possibilities for studying antique documents and other important materials. Take the first step towards exploring the unseen world and discover the thrill of uncovering hidden information.
Plastics have become ubiquitous in our daily lives, but few of us know the history behind this versatile material. The first plastic was created in 1863 by an American named John Wesley Hyatt, who invented celluloid, made from cellulose found in wood and straw. This discovery led to a cascade of new plastics, including bakelite, polystyrene, polyvinyl chloride, acrylics, and nylon. Plastics have replaced other materials like wood, glass, and fabric in furniture, clothing, and packaging. While plastics have brought convenience and cost-effectiveness, they have also created staggering environmental problems. Many plastics are made of nonrenewable resources, and plastic packaging was designed to be single-use, but some plastics take centuries to decompose, creating a huge buildup of waste. By learning about plastics, students can understand how science and innovation have shaped our world, and they can explore ways to address the environmental problems associated with plastic use.
MIT researchers have developed a 3D-printed miniature vacuum pump that could revolutionize the use of portable mass spectrometers. The pump is inexpensive, lightweight, and can operate at a low cost, making it ideal for use in remote locations or even in space. The unique design prevents fluid or gas from leaking while minimizing heat from friction during the pumping process, increasing the lifetime of the device. This breakthrough could lead to the monitoring of soil contamination in isolated parts of the world or geological survey equipment bound for Mars.
Tyres have revolutionized transportation, transforming the way we travel and changing society as we know it. From humble beginnings to modern innovations, the history of tyres is a story of creativity, ingenuity, and progress. The earliest tyres were made of solid rubber, and were prone to punctures and blowouts. John Boyd Dunlop, a Scottish veterinarian, revolutionized tyre design in 1888 by creating the first practical pneumatic tyre. This new design consisted of a rubber tube filled with air, encased in a fabric cover. Since then, tyres have continued to evolve, with advances in materials, tread design, and durability. The invention of the tyre had a profound impact on society. It enabled the development of faster and more efficient modes of transportation, from bicycles to automobiles to airplanes. The ability to transport goods and people quickly and efficiently has transformed economies and societies, making the world smaller and more interconnected. However, the production and disposal of tyres also have environmental impacts. The production of tyres requires significant amounts of energy and raw materials, while the disposal of worn-out tyres creates large amounts of waste. Tyre wear pollution also contributes to air and water pollution, which can have negative impacts on human health and the environment. Several leading academics and innovators have made significant contributions to the development of tyres. Charles Goodyear, an American inventor, developed the process of vulcanization, which made rubber more durable and usable in a wider range of applications. Michelin, a French tyre manufacturer, developed the radial tyre, which greatly improved handling and fuel efficiency. The history of tyres is a fascinating topic that offers insights into the ways in which human ingenuity has transformed the world. By exploring this topic further, students can gain a deeper understanding of the social, economic, and environmental impacts of this important invention.
Traffic is a frustrating phenomenon that can waste a lot of our time. Physicists have discovered that sudden fluctuations in speed are the real culprit of traffic. When even one driver hits the brakes, it can cause a chain reaction among the vehicles behind them, leading to a traffic jam. However, if drivers travel at a constant rate, traffic flows freely. Understanding this concept can help us find ways to prevent traffic jams, such as widening roads, better synchronizing traffic signals, or building driverless cars that travel at more constant speeds. Learning about physics and how it applies to everyday life can help us solve problems and make our world a better place.
Are you fascinated by cars and how they work? Do you dream of designing the next generation of vehicles that will take the world by storm? If so, then Automotive Engineering might be the perfect field of study for you! Automotive Engineering is an exciting and dynamic field that combines elements of mechanical, electrical, and materials engineering to create the vehicles of tomorrow. From designing engines and transmissions to improving fuel efficiency and safety features, Automotive Engineering covers a wide range of fascinating topics that will keep you engaged and inspired throughout your studies. One of the most interesting aspects of Automotive Engineering is the constant innovation and research that is taking place in the field. From developing new materials that are stronger and more lightweight to improving hybrid and electric vehicle technology, there is always something new and exciting happening in the world of Automotive Engineering. Some of the most well-known figures in the field include Ferdinand Porsche, who designed the iconic Porsche 911, and Elon Musk, who is leading the charge in developing electric and autonomous vehicles through his company Tesla. At the undergraduate level, students can expect to study a range of modules that cover topics such as vehicle dynamics, engine design, and materials science. There are also opportunities for further specialisation in areas such as aerodynamics, alternative fuels, and vehicle safety. After graduation, there are a wide range of potential career paths available to Automotive Engineering graduates, including roles in vehicle design, research and development, and manufacturing. Some of the most notable employers in the field include Ford, General Motors, and BMW, as well as government agencies such as NASA and the Department of Defense. To succeed in Automotive Engineering, students should have a strong foundation in math, physics, and chemistry, as well as an interest in mechanical and electrical systems. They should also possess strong problem-solving skills and be able to work well in a team environment. So if you're ready to take your love of cars to the next level, consider studying Automotive Engineering and be a part of shaping the future of transportation!
Fiber optics is a revolutionary technology that has transformed long-distance communication. Unlike traditional copper wires, fiber optic cables carry pulses of light, which represent digital data. These cables can transmit an enormous amount of information over great distances, with minimal power loss. Fiber optics has enabled the creation of the internet, which has become a planetary computer connecting people across the globe. However, the vast majority of internet traffic is processed in data centers, where electrical cables waste half their running power as heat. To address this problem, researchers have developed integrated photonics, a technology that uses ultrathin silicon wires to guide light. This allows for the creation of tiny photonic chips that plug into servers and convert electrical signals to optical and back, enabling power-efficient fiber connections. Integrated photonics also has the potential to break open wireless bandwidth limitations and make hyperfast wireless connectivity a reality. By learning about fiber optics and integrated photonics, students can gain a deeper understanding of the technology that powers the internet and the potential for future innovation.
The future of resource extraction lies in space exploration. Asteroids, leftovers from the formation of the planet 4.5 billion years ago, contain rare and precious materials such as platinum, iron, and nickel. The mining industry on Earth is harmful to the environment and people, but space mining could provide a clean and sustainable alternative. Cheaper space travel is necessary to make asteroid mining profitable, and scientists and economists are working on solutions such as electric spaceships. Once a stable asteroid is secured, space mining and processing equipment can extract valuable materials through a process that uses giant mirrors to focus sunlight and heat up asteroid rock. Even a small percentage of a single asteroid's mass in precious metals could be worth billions of dollars. The benefits of space exploration and asteroid mining are vast, and the possibilities for discovery and innovation are endless.
"Rocks are becoming rocks again!" says chemist Peter Psarras from the Clean Energy Conversions Lab (CECL) at the University of Pennsylvania. Psarras and his team are turning waste from industrial mines into magnesium carbonate through a carbon-neutral and inexpensive process, with the goal of storing CO2. With five partner mines, the CECL lab, funded by the Kleinman Center for Energy Policy and the School of Engineering and Applied Science, is exploring the environmental potential of mine tailings and determining the scalability of the carbonation process. Join Psarras and the CECL in their mission to tap into the "moved mountain" of waste and be inspired by their cutting-edge technology.
Activities
People and Organizations