Article
More like this
As we look towards the future, it's clear that our world is changing rapidly. One of the most exciting developments is the emergence of floating nations on the sea. These seascrapers will be built using 3D printed biorock, and will be powered by ocean thermal energy conversion. They will allow us to harvest calcium carbonate directly from seawater, and create vast ocean gardens that will reduce ocean acidity and provide environmentally restorative food. The first to seek jobs on these farms will be the poorest billion on Earth, who will come to the blue frontier because floating societies will require refugees to survive economically. These seasteads will restore the environment, enrich the poor and liberate humanity from politicians. By exploring the depths beneath the ocean, we will unlock new discoveries and opportunities that we can't even imagine yet. So let's embrace this new century of seasteading and explore the oceans first, and the stars next.
Are you curious about what happens to all the dirty diapers that you throw away? Well, a team of engineers from Japan's University of Kitakyushu has found a way to recycle them into building materials for houses. In a recent article published in Smithsonian Magazine, the researchers explain how they cleaned and shredded dirty diapers to create a small, structurally sound house prototype. This innovative idea could help reduce plastic waste, lower the cost of building materials, and provide more affordable housing options for low- and middle-income communities. Read the full article to learn more about this exciting development in sustainable construction!
Experience Africa from a whole new perspective with Edward Burtynsky's latest collection of photographs, African Studies. From the geometric patterns of agriculture to the devastating impact of corporate greed, Burtynsky's aerial images capture the intricate relationship between humans and the planet. Discover the beauty and horror of Africa's vast resources, extracted with both modern technology and centuries-old techniques. Explore the impact of China's shifting economy on the African continent, and ponder the abstract beauty of Namibia's Tsaus Mountains. The African continent is a final frontier worth exploring.
Are you interested in learning about innovative ways to combat climate change and food loss? Check out this article from MIT about a new system that uses passive cooling to preserve food crops and supplement conventional air conditioners in buildings, with no need for power and only a small need for water. The system cleverly combines previous standalone cooling designs to produce significantly more cooling overall, enough to help reduce food losses from spoilage in parts of the world that are already suffering from limited food supplies. Read more about this exciting development in the journal Cell Reports Physical Science.
Are you passionate about protecting the environment and making a positive impact on the world? If so, a career in Environmental Engineering might be the perfect fit for you! Environmental Engineers are responsible for designing and implementing solutions to environmental problems. From developing sustainable energy sources to managing waste disposal, Environmental Engineers work to create a healthier and more sustainable planet. One exciting aspect of this field is the opportunity to work on real-life projects that make a difference. For example, an Environmental Engineer might design a water treatment system to provide clean drinking water to a community in need, or develop a plan to reduce greenhouse gas emissions from a factory. Typical duties of an Environmental Engineer include conducting environmental impact assessments, designing and implementing pollution control systems, and managing hazardous waste disposal. There are also many areas of specialisation within the field, such as air quality management, water resource management, and renewable energy. To become an Environmental Engineer, you will typically need a Bachelor's degree in Environmental Engineering or a related field such as Civil Engineering or Chemical Engineering. Popular undergraduate programs include the Bachelor of Science in Environmental Engineering at the University of California, Berkeley, and the Bachelor of Engineering in Environmental Engineering at the University of New South Wales in Australia. Helpful personal attributes for a career in Environmental Engineering include strong problem-solving skills, attention to detail, and a passion for sustainability. You should also be comfortable working with a variety of stakeholders, including government agencies, private companies, and community groups. Job prospects for Environmental Engineers are strong, with a projected growth rate of 8% from 2019 to 2029. There are many attractive potential employers in both the public and private sectors, including government agencies such as the Environmental Protection Agency in the United States, and private companies such as Tesla and Google. So if you're looking for a career that combines your passion for the environment with your love of problem-solving, consider a career in Environmental Engineering. You could be the next person to make a positive impact on our planet!
Are you passionate about the environment and curious about the impact of climate change on our planet? Then a degree in Climate Science could be the perfect fit for you! Climate Science is an exciting and rapidly evolving field that encompasses a range of disciplines, from atmospheric science to ecology and beyond. One of the most appealing aspects of studying Climate Science is the opportunity to make a real difference in the world. As a Climate Scientist, you'll be at the forefront of efforts to understand and mitigate the effects of climate change. You'll study everything from the causes and consequences of global warming to the ways in which we can reduce our carbon footprint and protect the planet for future generations. There are countless fascinating areas of research within the field of Climate Science. For example, you might study the impact of rising sea levels on coastal communities or investigate the ways in which climate change is affecting agriculture and food security around the world. You might also explore the latest innovations in renewable energy technology or examine the role of policy and advocacy in shaping global climate action. At the undergraduate level, students typically take a range of modules that cover the fundamentals of Climate Science, including meteorology, oceanography, and geology. As you progress through your degree, you'll have the opportunity to specialize in areas such as climate modeling, climate policy, or environmental management. And with a degree in Climate Science, you'll be well-equipped to pursue a range of exciting careers in fields such as environmental consulting, renewable energy, or climate policy. Some of the most exciting potential employers for Climate Science graduates include government agencies such as the Environmental Protection Agency or the National Oceanic and Atmospheric Administration, as well as private-sector companies like Tesla and Google. And with the growing urgency of the climate crisis, there's never been a better time to pursue a career in this field. To succeed in Climate Science, you'll need to be curious, analytical, and passionate about making a difference in the world. Strong skills in math and science are also essential, as is a deep interest in the natural world and a commitment to sustainability. So if you're ready to take on one of the most pressing challenges of our time, a degree in Climate Science could be the perfect choice for you!
Scientists at A\*STAR's IMRE have successfully upcycled PET plastic waste into polymer electrolytes, which are key components for safer LiBs. This paves the way for a future powered by more sustainable energy, creating a circular economy while combating the mounting plastic waste issue. The team aims to advance the technology for upcycling waste plastics on a larger scale to create components for eco-friendly batteries.
Unused shipping containers are being transformed into urban farms, providing fresh, healthy, and affordable produce year-round. Local Roots Farms is pioneering this scalable model of indoor agriculture, using hydroponics and controlled environment techniques to grow crops equivalent to five acres of conventional outdoor farming. By cutting down food miles and providing local leafy greens, Local Roots Farms aims to solve many issues with the current food system, while also addressing urban food deserts. Founder Daniel Kuenzi shares his story and vision with Smithsonian.com.
The UN's Decade on Ecosystem Restoration calls for urgent action to restore freshwater ecosystems. A recent study of Australian stream management highlights the need for collaborative, participatory, and adaptive nature-based solutions. Discover how building communities of practice, implementing nature-based solutions, and allocating more resources for adaptive management can help achieve global goals for ecosystem restoration.
The story of Rudolf Diesel, the man behind the diesel engine, is a fascinating tale of innovation and environmentalism. Diesel's revolutionary compression ignition engine was more eco-friendly and power efficient than alternatives at the time, and it could run on a variety of fuels including coal dust and vegetable oils. Diesel became an evangelist for the use of vegetable oils as fuel, and his invention made him a millionaire by the time he reached his 40s. The benefits of exploring this academic concept are clear: understanding the history of innovation and environmentalism can inspire us to think creatively about how we can make our world a better place. Additionally, learning about the diesel engine can help us think critically about current debates around diesel fuel and its environmental impact. By exploring this academic concept, we can become more informed citizens and better equipped to make decisions that positively impact our world.
As the world population continues to soar, INFARM's founders are leading an agricultural revolution with their innovative solution for urban self-sufficiency. By using vertical farms, this startup is redefining the way we grow vegetables and herbs, with less water and no soil, and with the potential to yield even greater results than traditional greenhouses. Find out how INFARM is collaborating with top designers to create modular, climate-controlled units that can be customized for any user, from a home grower to a supermarket owner.
In "Storms of My Grandchildren," Dr. James Hansen, the preeminent climate scientist, delivers a powerful and urgent message about the looming threat of global warming. With a stark warning that the planet is hurtling towards a climatic point of no return, Hansen calls for immediate and decisive action to phase out coal and achieve a goal of 350 parts per million of carbon dioxide in the atmosphere. This book is a must-read for anyone concerned about the future of our planet and the fate of future generations. Recommended for students of environmental science, policy makers, and anyone interested in the urgent issue of climate change, "Storms of My Grandchildren" provides a comprehensive and compelling overview of the science behind global warming and the political obstacles to addressing it. The book is an important resource for those seeking to understand the dire consequences of inaction, and the urgent need for a groundswell of public support to create a tipping point for change. Hansen's message is clear: we must act now to save our planet and our grandchildren from a catastrophic fate.
Did you know that human activity can cause earthquakes? In fact, they're becoming more common due to drilling, mining, and other subsurface activities. For example, a 5.1 magnitude earthquake in Spain in 2011 was caused by farmers using underground water for irrigation, which caused a shift in the fault line. The oil and gas industry, geothermal power developers, and dam builders have also caused man-made earthquakes. Learning about the science behind earthquakes is not only intellectually fascinating, but it can also help us understand how to avoid making the problem worse. Earthquakes are one of the most catastrophic natural disasters, and there is currently no way to predict when they will strike. As students, we can take an active role in learning about the impact of human activity on the environment and how we can make a positive difference.
As demand for materials like copper and lithium skyrockets with the push for clean energy, companies are eyeing the ocean floor for a new source. But what are the potential consequences for marine life and ecosystems? Learn about the growing controversy and the UN's efforts to regulate deep-sea mining in this thought-provoking article.
Have you ever wondered about the rocks and minerals that make up the earth's crust, or how mountains are formed? If so, a career in geology might be the perfect fit for you! Geology is the study of the Earth, its processes, and its materials. Geologists explore, analyze, and interpret the Earth's physical and chemical properties, from its deep interior to its surface, including the oceans and the atmosphere. A geologist's work can take them to some of the most exciting and remote places on the planet, such as volcanic islands, deserts, and mountain ranges. They study the Earth's natural resources and hazards, help locate and extract valuable minerals and energy resources, and investigate the effects of human activities on the environment. Geologists have many opportunities for specialization, including mineralogy, volcanology, paleontology, geophysics, hydrogeology, and environmental geology, to name a few. They can work in a wide range of industries and organizations, such as mining, oil and gas exploration, environmental consulting, government agencies, academia, and research institutions. To become a geologist, you will typically need at least a bachelor's degree in geology or a related field, such as earth science, geophysics, or environmental science. Some popular undergraduate programs in geology include those offered by the University of California, Berkeley, the University of Colorado Boulder, and the University of Michigan. Helpful personal attributes for success in this field include a strong curiosity about the natural world, excellent analytical and problem-solving skills, attention to detail, and the ability to work well as part of a team. The job prospects for geologists are good, with a projected annual job growth rate of 5% between 2020 and 2030, according to the US Bureau of Labor Statistics. Geologists can find employment in a wide range of public and private sector organizations, including the US Geological Survey, ExxonMobil, the National Park Service, the United Nations, and many more.
Plastics have become ubiquitous in our daily lives, but few of us know the history behind this versatile material. The first plastic was created in 1863 by an American named John Wesley Hyatt, who invented celluloid, made from cellulose found in wood and straw. This discovery led to a cascade of new plastics, including bakelite, polystyrene, polyvinyl chloride, acrylics, and nylon. Plastics have replaced other materials like wood, glass, and fabric in furniture, clothing, and packaging. While plastics have brought convenience and cost-effectiveness, they have also created staggering environmental problems. Many plastics are made of nonrenewable resources, and plastic packaging was designed to be single-use, but some plastics take centuries to decompose, creating a huge buildup of waste. By learning about plastics, students can understand how science and innovation have shaped our world, and they can explore ways to address the environmental problems associated with plastic use.
Are you fascinated by the Earth's natural wonders and the forces that shape our planet? Do you enjoy problem-solving and critical thinking? If so, then Geological Engineering might be the perfect field of study for you! Geological Engineering is a branch of engineering that focuses on the study of the Earth's materials, structures, and processes. This interdisciplinary field combines elements of geology, engineering, and mathematics to solve complex problems related to the Earth's resources, natural hazards, and environmental sustainability. One of the most exciting aspects of Geological Engineering is its real-world applications. From designing safe and efficient mines to mitigating the impact of natural disasters, Geological Engineers play a crucial role in shaping our world. For example, Geological Engineers are involved in the construction of tunnels and dams, the exploration and extraction of oil and gas reserves, and the development of renewable energy sources such as geothermal and hydroelectric power. Geological Engineering is also a field of constant innovation and discovery. Recent research has focused on developing new methods for detecting and monitoring earthquakes, predicting volcanic eruptions, and understanding the long-term effects of climate change on the Earth's geology. Some of the most well-known academic figures in this field include Charles Darwin, who studied geology during his voyage on the HMS Beagle, and Marie Tharp, who created the first comprehensive map of the ocean floor. At the undergraduate level, students in Geological Engineering typically take courses in geology, physics, chemistry, and mathematics, as well as specialized courses in topics such as mineralogy, petrology, and structural geology. Students may also have the opportunity to participate in fieldwork and research projects, gaining hands-on experience in the field. After graduation, there are a wide range of potential career paths for Geological Engineers. Some may choose to work in the mining industry, designing and managing mining operations around the world. Others may work in environmental consulting, helping to assess the impact of human activities on the Earth's natural systems. Still others may work in government agencies, such as the United States Geological Survey or the National Oceanic and Atmospheric Administration, where they can contribute to important research and policy decisions. To succeed in Geological Engineering, students should have a strong foundation in mathematics and science, as well as excellent critical thinking and problem-solving skills. A passion for the Earth's natural systems and a desire to make a positive impact on the world are also important qualities for success in this field. So if you're ready to explore the fascinating world of Geological Engineering, start researching universities and programs today! With a degree in this field, you'll be well-prepared for a rewarding and impactful career in a variety of industries around the world.
Electric vehicles have come a long way since their inception in the late 19th century. While they were once the preferred mode of transportation due to their efficiency and reliability, the high cost of batteries and the discovery of oil reserves led to a decline in their popularity. However, with the growing concern over climate change, electric vehicles are making a comeback. They are now more cost-effective, efficient, and widely available than ever before. Not only do they accelerate faster than gas-powered cars, but they also save drivers money in the long run. With governments around the world focusing on reducing carbon emissions, it's expected that electric vehicles will soon replace gas-powered ones entirely. As a high school student, learning about the history and advancements in electric vehicles can provide valuable insight into the intersection of technology and environmentalism, and inspire you to think about how you can contribute to a sustainable future.
Climate change anxiety is a relatively new term, but the fear of the future and the trauma it may bring is not. We are facing an existential fear about our survival, and it is important to understand our impact as human beings on the planet. It is normal to feel anxious about the effects of climate change, but this anxiety can also be a way of digesting the information. As students, it is essential to explore this topic and understand the key concepts of climate change, its impact on our world, and the part we can play in mending the part of the world that is within our reach. Learning about this topic not only benefits us intellectually but also practically as it helps us to make informed decisions about our future and the world we want to live in. Let's embrace the challenge and become part of the solution.
The world's shift towards electric vehicles to reduce greenhouse gas emissions will require a huge demand for critical metals like lithium, nickel, cobalt, manganese, and platinum. This demand will have economic and supply-chain consequences, according to new research from Cornell University. Discover how countries can manage this demand and promote a circular economy for critical metals.
Activities
People and Organizations