Article
More like this
Have you ever wondered how suspension bridges hold up under the weight of traffic or how dams can withstand the force of thousands of gallons of water? J.E. Gordon's Structures: Or Why Things Don't Fall Down is an accessible and witty explanation of the basic forces that hold together the essential things of our world. From buildings and bodies to flying aircraft and eggshells, this book will ease your anxiety and answer your questions. Recommended for architects, engineers, and anyone interested in the foundations of our everyday lives, Structures: Or Why Things Don't Fall Down by J.E. Gordon offers a clear and cogent explanation of the concepts of stress, shear, torsion, fracture, and compression. Whether you're building a house, a sailboat, or a catapult, this book is a handy tool for understanding the mechanics of joinery, floors, ceilings, hulls, masts, and flying buttresses. With its encyclopedic range of reference and witty insights, this book is also a fascinating read for those interested in the marvels of technology that shape our world.
Are you fascinated by buildings and structures? Do you enjoy solving complex problems and creating solutions that are both functional and beautiful? If so, a career in Structural Engineering might be just the path for you! Structural Engineers are responsible for designing and analyzing structures such as buildings, bridges, and towers. They work with architects and construction teams to ensure that the structure is safe, stable, and able to withstand natural disasters such as earthquakes and hurricanes. One of the most appealing aspects of this field is the opportunity to work on some of the most iconic structures in the world. From the Burj Khalifa in Dubai to the Golden Gate Bridge in San Francisco, Structural Engineers have played a crucial role in bringing these structures to life. Typical duties of a Structural Engineer include analyzing blueprints and construction plans, conducting site inspections, and using computer software to create 3D models of structures. There are also many areas of specialization within the field, such as seismic design, wind engineering, and structural dynamics. To become a Structural Engineer, you will typically need a Bachelor's degree in Civil Engineering or a related field. Popular undergraduate programs include Structural Engineering, Architectural Engineering, and Civil Engineering. Many universities also offer Master's and PhD programs for those who wish to specialize further. Helpful personal attributes for a career in Structural Engineering include strong problem-solving skills, attention to detail, and the ability to work well in a team. You should also have excellent communication skills, as you will be working closely with architects, construction teams, and other professionals. Job prospects for Structural Engineers are strong, with the Bureau of Labor Statistics projecting a 6% growth rate over the next decade. There are also many attractive potential employers in both the public and private sectors. For example, you could work for a government agency such as the Department of Transportation, or for a private engineering firm such as Arup or WSP. In summary, a career in Structural Engineering offers the opportunity to work on some of the most exciting and challenging projects in the world. With strong job prospects, a variety of specializations, and the chance to make a real difference in the world, this field is a fantastic choice for anyone with a passion for engineering and design.
The Netherlands is a country that has a long history of managing water. With almost a quarter of its territory below sea level, the region is prone to flooding. However, the Dutch government has taken measures to protect the entire southwestern region. The Delta Works project is the most sophisticated flood prevention project in the world, and it has reduced the annual odds of flooding to about 1 in 10,000. The project includes various infrastructure projects, such as damming the region's flood-prone estuaries and building the Maeslantkering, which is one of the planet's largest mobile structures. Additionally, the "Room for the River" plan has relocated farms and dikes away from the shore, creating reservoirs and habitats for local wildlife. Rotterdam, a thriving city almost entirely below sea level, embodies the Netherlands' multi-pronged approach to water management. By learning about the Dutch government's innovative solutions to natural disasters, students can gain a deeper understanding of how to create sustainable and resilient communities.
Are you fascinated by the design and construction of towering skyscrapers, magnificent bridges, and sprawling road networks? Do you want to be a part of the team that creates the infrastructure that shapes our world? If so, then studying Civil Engineering at the undergraduate level might be the perfect fit for you! Civil Engineering is a field of study that involves the design, construction, and maintenance of the built environment. This includes everything from buildings and bridges to roads and water systems. Civil Engineers use their technical skills and creativity to solve complex problems and create structures that are safe, efficient, and sustainable. In recent years, there have been several exciting innovations in the field of Civil Engineering. For example, researchers have developed new materials that are stronger and more durable than ever before. They have also used cutting-edge technology like drones and 3D printing to improve the efficiency of construction projects. Some of the most inspiring academic figures in the field include Dr. Henry Petroski, who has written extensively on the history of engineering failures, and Dr. Linda Hanagan, who is a leading expert on sustainable infrastructure. At the undergraduate level, students in Civil Engineering typically take courses in subjects like structural analysis, geotechnical engineering, and transportation planning. They may also have the opportunity to specialize in areas like environmental engineering or construction management. Some exciting examples of real-life Civil Engineering projects include the construction of the Burj Khalifa in Dubai, the Panama Canal expansion, and the redevelopment of the World Trade Center site in New York City. After graduation, there are a wide range of potential career paths for Civil Engineers. They may work for government agencies, construction firms, or consulting firms. Some popular industries for prospective employment include transportation, energy, and water resources. Notable potential employers include the US Army Corps of Engineers, Bechtel Corporation, and Arup Group. Other careers that may be relevant to Civil Engineering include architecture, urban planning, and environmental science. To succeed in this field of study, it is helpful to have strong math and science skills, as well as an interest in problem-solving and design. Effective communication and teamwork skills are also essential, as Civil Engineers often work on projects with large, interdisciplinary teams. If you're ready to take on the challenge of creating the infrastructure of the future, then studying Civil Engineering may be the perfect choice for you!
Are you passionate about the environment and want to make a positive impact on the world? Then a career as a Green Building Engineer might just be the perfect fit for you! As a Green Building Engineer, you'll be responsible for designing and implementing sustainable building practices that reduce the impact on the environment. One of the most appealing aspects of this role is the opportunity to work on exciting and innovative projects that are making a real difference in the world. For example, you could be involved in designing a LEED-certified building that uses solar panels, rainwater harvesting systems, and energy-efficient heating and cooling systems. Or you could be working on a project that involves retrofitting an existing building to make it more sustainable. As a Green Building Engineer, your typical duties might include conducting energy audits, developing sustainability plans, designing green building systems, and overseeing construction projects. There are also many areas of specialization within this field, including sustainable design, renewable energy systems, and green building materials. To become a Green Building Engineer, you'll typically need a degree in engineering, architecture, or a related field. Popular undergraduate programs and majors include Civil Engineering, Environmental Engineering, and Architecture. Helpful personal attributes include strong problem-solving skills, creativity, and a passion for sustainability. Job prospects in this field are excellent, with a growing demand for sustainable building practices around the world. Some notable employers in this field include the U.S. Green Building Council, the World Green Building Council, and the International Living Future Institute. With a career as a Green Building Engineer, you'll not only be making a positive impact on the environment, but you'll also have the opportunity to work on exciting and innovative projects that are shaping the future of the built environment.
Concrete is the most widely used construction material in the world, but it has a weakness: it's prone to catastrophic cracking that costs billions of dollars to repair each year. However, scientists have discovered ways to create concrete that can heal itself. By adding hidden glue or bacteria and fungi spores to the concrete mix, cracks can be repaired up to almost 1mm wide. This technique has the potential to make concrete more resilient and long-lasting, which could drastically reduce the financial and environmental cost of concrete production. Learning about the science behind concrete and its potential for self-healing can not only be intellectually stimulating but also practically beneficial for the future of construction. Imagine being part of the solution to creating more sustainable and durable infrastructure for our cities.
Have you ever wondered how cities are built? How bridges are constructed? How roads are designed? If you have, then a career in civil engineering might be the perfect fit for you! Civil engineering is a field that involves designing, building, and maintaining infrastructure such as roads, bridges, buildings, and water systems. Civil engineers use their knowledge of mathematics, physics, and materials science to create safe, efficient, and sustainable structures that meet the needs of society. As a civil engineer, you could work on a wide range of projects, from designing a new highway to creating a sustainable water treatment system. You could be responsible for ensuring the safety of thousands of people who use the structures you design and build. Some of the most exciting and meaningful aspects of civil engineering include the ability to make a real difference in people's lives. For example, you could design a new hospital that saves lives, or create a new transportation system that reduces traffic and pollution. You could also work on projects that help communities recover from natural disasters, such as earthquakes or floods. Typical duties of a civil engineer include designing structures, managing construction projects, and conducting inspections to ensure that structures are safe and meet building codes. Civil engineers can also specialize in areas such as geotechnical engineering, environmental engineering, or structural engineering. To become a civil engineer, you typically need a bachelor's degree in civil engineering or a related field. Popular undergraduate programs include civil engineering, environmental engineering, and structural engineering. Some civil engineers also pursue advanced degrees, such as a master's or doctorate, to specialize in a particular area of the field. Helpful personal attributes for civil engineers include strong analytical skills, attention to detail, and the ability to work well in a team. Civil engineers must also be able to communicate effectively with clients, contractors, and other stakeholders. Job prospects for civil engineers are strong, with the field projected to grow by 6% from 2018 to 2028. Civil engineers can find employment in a variety of sectors, including government agencies, consulting firms, and construction companies. Some notable employers include the U.S. Army Corps of Engineers, Bechtel Corporation, and Jacobs Engineering Group. In conclusion, a career in civil engineering offers the opportunity to make a real difference in people's lives, work on exciting and meaningful projects, and have a positive impact on the world around us. If you have a passion for math, science, and design, consider exploring this rewarding and fulfilling career path.
Architecture is more than just designing buildings, it's about creating spaces that inspire, evoke emotion and are functional. It's a field that blends creativity, innovation and technical skills to create structures that are both aesthetically pleasing and practical. Architects are responsible for designing everything from homes to skyscrapers, and their work can be seen all around us. From the iconic Sydney Opera House to the towering Burj Khalifa in Dubai, architects have left their mark on the world. In recent years, there has been a surge of interest in sustainable architecture, with many architects incorporating environmentally friendly design principles into their work. This has led to some incredible innovations, such as buildings that generate their own energy, and structures that are made entirely from recycled materials. Studying architecture at undergraduate level will give you a strong foundation in the principles of design, construction and engineering. You will learn how to use a range of software programs to create 2D and 3D designs, as well as how to read and interpret architectural plans. As you progress through your studies, you will have the opportunity to specialize in areas such as urban planning, sustainable design or historic preservation. You may even have the chance to study abroad, gaining valuable experience and exposure to different architectural styles and techniques. Upon graduation, you will be equipped with the skills and knowledge to pursue a range of careers in the architecture industry. You could work for a large architecture firm, designing structures for clients around the world. Alternatively, you could work in the public sector, designing public spaces such as parks or government buildings. Some of the most notable employers in the industry include Foster + Partners, Zaha Hadid Architects, and Gensler. These firms are known for their innovative designs and commitment to sustainable architecture. To succeed in the field of architecture, you will need to be creative, detail-oriented and have strong technical skills. You should also have a passion for design and a desire to create structures that are not only beautiful but also functional and sustainable. In summary, studying architecture at undergraduate level is an exciting and rewarding experience that will equip you with the skills and knowledge to pursue a range of careers in the architecture industry. Whether you want to design skyscrapers or public spaces, this field of study offers endless opportunities for creativity and innovation.
Neri Oxman is a groundbreaking designer and architect who has been pushing the boundaries of interdisciplinary design for over a decade. As a leader in the field, she has made significant contributions to our understanding of how design can be used to solve complex problems at the intersection of science, engineering, and art. Interdisciplinary design is a field that seeks to bring together different disciplines in order to tackle complex problems and find innovative solutions. This approach is important because it allows us to take a holistic and integrated approach to design, rather than relying solely on one discipline. For example, Neri Oxman's work often involves collaboration between architects, engineers, materials scientists, and computer scientists to create structures and products that are not only beautiful and functional but also sustainable. One of Neri Oxman's most well-known projects is the Silk Pavilion, a structure made entirely of silkworms. The silkworms spun the silk around a steel frame, creating a structure that was both aesthetically stunning and environmentally friendly. This project highlights the importance of interdisciplinary design, as it involves the integration of biology, engineering, and architecture to create a new type of structure. Another example of Neri Oxman's interdisciplinary approach is her work on the Mediated Matter Group at MIT, where she is a Professor of Media Arts and Sciences. This group brings together researchers from diverse backgrounds to work on projects that explore the intersection of digital design, manufacturing, and the natural world. One of their projects, for example, involves using 3D printing technology to print structures made of natural materials, such as wood and mycelium (the vegetative part of mushrooms). Neri Oxman's contributions to interdisciplinary design have been recognized by leading academics in the field. For example, Walter Berry, Dean of the School of Architecture at the University of Virginia, has said that "Neri Oxman is a visionary who is pushing the boundaries of design in new and exciting ways."
Water is a seemingly simple necessity that we often take for granted. But did you know that the systems that bring us water have undergone three revolutions in the past 2,500 years? David Sedlak's "Water 4.0" explores the marvels of engineering that have allowed urban living to flourish, and the challenges that these systems face today. From Roman aqueducts to modern-day treatment plants, this book offers an insider's look at the past, present, and future of our water systems. Discover how a fundamental change in our relationship with water is necessary for a sustainable future. Recommended for environmentalists, engineers, urban planners, and anyone interested in sustainability, "Water 4.0" offers a comprehensive overview of the history and future of urban water systems. The book covers a wide range of fields, from ancient Roman engineering to modern-day treatment plants, making it relevant to students of history, engineering, and environmental studies. It also highlights the importance of water management for sustainable urban planning, making it a valuable resource for urban planners and policymakers. Anyone who cares about the future of our planet and the role of water in it will find this book to be an essential read.
Are you fascinated by cars and how they work? Do you dream of designing the next generation of vehicles that will take the world by storm? If so, then Automotive Engineering might be the perfect field of study for you! Automotive Engineering is an exciting and dynamic field that combines elements of mechanical, electrical, and materials engineering to create the vehicles of tomorrow. From designing engines and transmissions to improving fuel efficiency and safety features, Automotive Engineering covers a wide range of fascinating topics that will keep you engaged and inspired throughout your studies. One of the most interesting aspects of Automotive Engineering is the constant innovation and research that is taking place in the field. From developing new materials that are stronger and more lightweight to improving hybrid and electric vehicle technology, there is always something new and exciting happening in the world of Automotive Engineering. Some of the most well-known figures in the field include Ferdinand Porsche, who designed the iconic Porsche 911, and Elon Musk, who is leading the charge in developing electric and autonomous vehicles through his company Tesla. At the undergraduate level, students can expect to study a range of modules that cover topics such as vehicle dynamics, engine design, and materials science. There are also opportunities for further specialisation in areas such as aerodynamics, alternative fuels, and vehicle safety. After graduation, there are a wide range of potential career paths available to Automotive Engineering graduates, including roles in vehicle design, research and development, and manufacturing. Some of the most notable employers in the field include Ford, General Motors, and BMW, as well as government agencies such as NASA and the Department of Defense. To succeed in Automotive Engineering, students should have a strong foundation in math, physics, and chemistry, as well as an interest in mechanical and electrical systems. They should also possess strong problem-solving skills and be able to work well in a team environment. So if you're ready to take your love of cars to the next level, consider studying Automotive Engineering and be a part of shaping the future of transportation!
MIT researchers have discovered a way to reduce concrete's carbon footprint by introducing baking soda into the manufacturing process. This new method could potentially mineralize up to 15% of the carbon dioxide associated with cement production, without altering the material's mechanical properties. The resulting concrete sets more quickly and doubles its mechanical performance. This breakthrough could pave the way for the development of carbon-neutral construction materials.
Do you love the idea of designing and building transportation systems that improve people's lives? If so, you might be interested in a career in transportation engineering. This exciting field is all about creating efficient and sustainable transportation solutions that keep people and goods moving safely and smoothly. As a transportation engineer, you'll work on a wide range of projects, from designing highways and bridges to planning public transit systems and bike lanes. You'll use your expertise in math, physics, and engineering to develop innovative solutions that make transportation more accessible, affordable, and environmentally friendly. One of the most appealing aspects of transportation engineering is the opportunity to work on projects that have a real impact on people's lives. For example, you might design a new highway that reduces traffic congestion and makes commuting faster and safer for thousands of drivers. Or you might help plan a new public transit system that provides affordable and reliable transportation for people who don't have access to a car. Some of the typical duties of a transportation engineer include conducting research and analysis to identify transportation needs and problems, developing and evaluating design options, preparing cost estimates and project schedules, and working with other engineers, architects, and planners to coordinate projects. There are many different areas of specialization within transportation engineering, including traffic engineering, urban planning, and environmental engineering. Depending on your interests and career goals, you might choose to focus on one of these areas or work across multiple disciplines. To become a transportation engineer, you'll typically need to earn a bachelor's degree in civil engineering or a related field. Popular undergraduate programs for aspiring transportation engineers include civil engineering, transportation engineering, and urban planning. In addition to technical skills and knowledge, there are several personal attributes that can be helpful for success in transportation engineering. These include strong communication skills, problem-solving abilities, attention to detail, and a passion for making a positive impact on people's lives. Job prospects for transportation engineers are strong and expected to grow in the coming years, particularly in the areas of sustainable transportation and infrastructure development. Some notable employers of transportation engineers include government agencies like the Federal Highway Administration and private companies like AECOM and Jacobs Engineering. So if you're interested in a career that combines technical expertise with real-world impact, transportation engineering might be the perfect fit for you. With a wide range of exciting projects and opportunities for growth, this field offers endless possibilities for those who are passionate about creating a better world through transportation.
"Rocks are becoming rocks again!" says chemist Peter Psarras from the Clean Energy Conversions Lab (CECL) at the University of Pennsylvania. Psarras and his team are turning waste from industrial mines into magnesium carbonate through a carbon-neutral and inexpensive process, with the goal of storing CO2. With five partner mines, the CECL lab, funded by the Kleinman Center for Energy Policy and the School of Engineering and Applied Science, is exploring the environmental potential of mine tailings and determining the scalability of the carbonation process. Join Psarras and the CECL in their mission to tap into the "moved mountain" of waste and be inspired by their cutting-edge technology.
Are you fascinated by the way vehicles move around cities and countries? Do you wonder how transportation systems are designed to ensure the smooth flow of people and goods? If you answered yes to these questions, then you might want to consider studying Transportation Engineering. Transportation Engineering is a field of study that combines elements of civil engineering, urban planning, and environmental science to design and maintain transportation systems. This includes roads, highways, airports, railways, and public transportation systems. Transportation engineers work to ensure that these systems are safe, efficient, and sustainable. One of the most interesting aspects of Transportation Engineering is the role it plays in shaping our daily lives. For example, transportation engineers design traffic signals to reduce congestion, plan bike lanes to encourage active transportation, and create public transportation networks to improve accessibility. They also work to reduce the environmental impact of transportation systems by developing sustainable transportation options. Recent research in Transportation Engineering has focused on innovative technologies such as autonomous vehicles, electric cars, and smart transportation systems. These advancements have the potential to revolutionize the way we move around our cities and countries. At the undergraduate level, students can expect to take courses in transportation planning, traffic engineering, and transportation systems analysis. They may also have the opportunity to specialize in areas such as airport design, railway engineering, or sustainable transportation. After completing their studies, graduates of Transportation Engineering can pursue careers in a variety of industries, including transportation planning, traffic engineering, and public transportation management. Some notable employers include the Department of Transportation, engineering consulting firms, and transportation technology companies. To succeed in this field, students should have strong analytical and problem-solving skills, as well as an interest in urban planning and environmental sustainability. They should also have a solid foundation in mathematics and physics. If you are passionate about designing transportation systems that improve people's lives and want to make a positive impact on the world, then Transportation Engineering might be the perfect field of study for you.
A permanent sunshade will be attached to London's "Walkie-Talkie" skyscraper to prevent reflected sunlight from damaging nearby properties. Developer Land Securities has received planning permission for the "brise soleil" solution after the glare from the building melted parked vehicles and damaged shops in the City of London. Discover how this innovative solution will solve the solar glare issue and protect the surrounding area.
MIT researchers have developed an AR headset, X-AR, that gives the wearer X-ray vision to locate and retrieve hidden items. Using RF signals and RFID tags, the headset directs the user to the hidden object, which shows up as a transparent sphere in the AR interface. X-AR could revolutionize e-commerce warehouses and manufacturing facilities by quickly finding items on cluttered shelves or buried in boxes. The research will be presented at the USENIX Symposium on Networked Systems Design and Implementation.
Batteries are a crucial part of our modern lives, powering everything from our smartphones to our cars. But the production and disposal of batteries have significant environmental impacts, from toxic chemicals and heavy metals to greenhouse gas emissions. Fortunately, there are sustainable options and alternatives to batteries that can help mitigate these negative effects. One such option is kinetic energy, which converts motion into electricity. For example, the piezoelectric effect harnesses energy from pressure, while the triboelectric effect converts friction into electricity. Another alternative to batteries is supercapacitors, which store energy in an electric field rather than a chemical reaction. They charge and discharge quickly and have a longer lifespan than traditional batteries. These sustainable options and alternatives to batteries are being researched and developed by leading academics in the field of materials science and engineering. Dr. Jennifer Lewis, a professor of biologically inspired engineering at Harvard University, is leading a team that is working on creating 3D-printed energy storage devices using a hydrogel-based ink. Meanwhile, Dr. Yi Cui at Stanford University is researching how to improve the energy density and safety of solid-state batteries. By exploring academic topics like materials science and engineering, students can learn about the properties of different materials and how they can be manipulated to create sustainable technologies. You can also learn about the environmental impact of technology and how sustainable alternatives can mitigate these effects. In conclusion, sustainable alternatives to batteries offer exciting opportunities for innovation and environmental sustainability. By exploring academic topics related to these technologies, high school students can gain a deeper understanding of the scientific principles behind sustainable energy and contribute to a more sustainable future.
Fiber optics is a revolutionary technology that has transformed long-distance communication. Unlike traditional copper wires, fiber optic cables carry pulses of light, which represent digital data. These cables can transmit an enormous amount of information over great distances, with minimal power loss. Fiber optics has enabled the creation of the internet, which has become a planetary computer connecting people across the globe. However, the vast majority of internet traffic is processed in data centers, where electrical cables waste half their running power as heat. To address this problem, researchers have developed integrated photonics, a technology that uses ultrathin silicon wires to guide light. This allows for the creation of tiny photonic chips that plug into servers and convert electrical signals to optical and back, enabling power-efficient fiber connections. Integrated photonics also has the potential to break open wireless bandwidth limitations and make hyperfast wireless connectivity a reality. By learning about fiber optics and integrated photonics, students can gain a deeper understanding of the technology that powers the internet and the potential for future innovation.
Have you ever wondered what lies beyond the pages of a closed book? Imagine being able to see the words on the pages without ever opening the cover. This is the exciting concept behind the technology developed by a group at MIT. Using terahertz waves, they can now read through closed books and uncover the hidden information inside. To do this, they had to overcome a series of challenges including the need for a radiation source that can penetrate the paper, the ability to distinguish between different pages, and the recognition of characters that are partially hidden. Learning about these academic concepts not only expands your knowledge of science and technology but also opens up new possibilities for studying antique documents and other important materials. Take the first step towards exploring the unseen world and discover the thrill of uncovering hidden information.
Activities
Academic Extensions
Thought Experiments