Article
More like this
Plastics have become ubiquitous in our daily lives, but few of us know the history behind this versatile material. The first plastic was created in 1863 by an American named John Wesley Hyatt, who invented celluloid, made from cellulose found in wood and straw. This discovery led to a cascade of new plastics, including bakelite, polystyrene, polyvinyl chloride, acrylics, and nylon. Plastics have replaced other materials like wood, glass, and fabric in furniture, clothing, and packaging. While plastics have brought convenience and cost-effectiveness, they have also created staggering environmental problems. Many plastics are made of nonrenewable resources, and plastic packaging was designed to be single-use, but some plastics take centuries to decompose, creating a huge buildup of waste. By learning about plastics, students can understand how science and innovation have shaped our world, and they can explore ways to address the environmental problems associated with plastic use.
Batteries are a crucial part of our modern lives, powering everything from our smartphones to our cars. But the production and disposal of batteries have significant environmental impacts, from toxic chemicals and heavy metals to greenhouse gas emissions. Fortunately, there are sustainable options and alternatives to batteries that can help mitigate these negative effects. One such option is kinetic energy, which converts motion into electricity. For example, the piezoelectric effect harnesses energy from pressure, while the triboelectric effect converts friction into electricity. Another alternative to batteries is supercapacitors, which store energy in an electric field rather than a chemical reaction. They charge and discharge quickly and have a longer lifespan than traditional batteries. These sustainable options and alternatives to batteries are being researched and developed by leading academics in the field of materials science and engineering. Dr. Jennifer Lewis, a professor of biologically inspired engineering at Harvard University, is leading a team that is working on creating 3D-printed energy storage devices using a hydrogel-based ink. Meanwhile, Dr. Yi Cui at Stanford University is researching how to improve the energy density and safety of solid-state batteries. By exploring academic topics like materials science and engineering, students can learn about the properties of different materials and how they can be manipulated to create sustainable technologies. You can also learn about the environmental impact of technology and how sustainable alternatives can mitigate these effects. In conclusion, sustainable alternatives to batteries offer exciting opportunities for innovation and environmental sustainability. By exploring academic topics related to these technologies, high school students can gain a deeper understanding of the scientific principles behind sustainable energy and contribute to a more sustainable future.
Discover the secrets behind the remarkable hydrodynamic performance of shark skin and how it's inspiring the design of bioinspired robots and materials!
Are you aware that over 2 billion people globally drink water contaminated with disease-causing microbes? Stanford University and SLAC National Accelerator Laboratory have developed a low-cost, recyclable powder that can kill thousands of waterborne bacteria per second when exposed to ordinary sunlight. This discovery could be a significant breakthrough for the nearly 30 percent of the world's population without access to safe drinking water. The results of their study are published in Nature Water.
Have you ever been amazed by the intricate designs found in nature, such as spider webs and butterfly wings? These natural wonders have served as a source of inspiration for some of the most groundbreaking inventions in human history. From airplane wings to bullet trains, the principles of nature are all around us, and today we will explore some of these incredible innovations and the amazing natural phenomena that inspired them. For example, the lotus leaf displays a natural phenomenon called the Lotus Effect. After a rain, water droplets just roll right off the leaf. Upon more intensive research, scientists found out that the lotus leaves' self-cleaning properties are a result of ultra hydrophobicity, inspiring many inventions that repel water, such as self-cleaning windows and waterproof clothing. In addition, gecko feet have inspired researchers to develop new adhesives that could revolutionize the way we build things. The principles of biomimicry, where scientists study the natural world to inspire new technology, have been used to design high-speed trains, such as the kingfisher bird's beak inspiring the train's noise-reducing and efficiency-increasing design. Furthermore, researchers studying the abalone shell and other natural materials have found inspiration to create stronger and more durable materials using nanotechnology. Leading academics such as Janine Benyus, author of Biomimicry: Innovation Inspired by Nature, and Dr. Joanna Aizenberg, a leading researcher in the field of biomimetics who has studied the Lotus Effect extensively, have contributed to the research and development of these innovations. The natural world is full of wonders waiting to be explored. By studying the principles of nature, we can inspire new innovations that could change the world. So go out there and discover the secrets of nature for yourself!
Are you passionate about the environment and want to make a positive impact on the world? Then a career as a Green Building Engineer might just be the perfect fit for you! As a Green Building Engineer, you'll be responsible for designing and implementing sustainable building practices that reduce the impact on the environment. One of the most appealing aspects of this role is the opportunity to work on exciting and innovative projects that are making a real difference in the world. For example, you could be involved in designing a LEED-certified building that uses solar panels, rainwater harvesting systems, and energy-efficient heating and cooling systems. Or you could be working on a project that involves retrofitting an existing building to make it more sustainable. As a Green Building Engineer, your typical duties might include conducting energy audits, developing sustainability plans, designing green building systems, and overseeing construction projects. There are also many areas of specialization within this field, including sustainable design, renewable energy systems, and green building materials. To become a Green Building Engineer, you'll typically need a degree in engineering, architecture, or a related field. Popular undergraduate programs and majors include Civil Engineering, Environmental Engineering, and Architecture. Helpful personal attributes include strong problem-solving skills, creativity, and a passion for sustainability. Job prospects in this field are excellent, with a growing demand for sustainable building practices around the world. Some notable employers in this field include the U.S. Green Building Council, the World Green Building Council, and the International Living Future Institute. With a career as a Green Building Engineer, you'll not only be making a positive impact on the environment, but you'll also have the opportunity to work on exciting and innovative projects that are shaping the future of the built environment.
Plastics are everywhere, and most of them never biologically degrade. This is a major problem for our environment, as plastic waste pollutes natural ecosystems for centuries. Fortunately, there are microbes that may be able to help us solve this growing problem. Scientists have discovered bacteria, also known as plastivores, that contain enzymes capable of breaking down PET polymers, a common type of plastic. However, we still need ways to biologically degrade all the other types of plastic, including abundant PEs and PPs. Researchers are looking for more heat-tolerant plastivores in the planet's most hostile environments and engineering better plastivorous enzymes in the lab. As students, you have the opportunity to learn about this important issue and contribute to finding solutions. By exploring the science behind plastic degradation, you can gain a deeper understanding of how to protect our environment and create a more sustainable future.
Scientists have developed a simple and low-cost method to break down almost a dozen types of "forever chemicals" known as PFAS, which have contaminated virtually every drop of water on the planet and are associated with certain cancers and thyroid diseases. By using a chemical guillotine and common solvents and reagents, they severed the molecular bonds in PFAS, gradually nibbling away at the molecule until it was gone, leaving behind only safe byproducts. This breakthrough could eventually make it easier for water treatment plants to remove PFAS from drinking water.
MIT researchers have discovered a way to reduce concrete's carbon footprint by introducing baking soda into the manufacturing process. This new method could potentially mineralize up to 15% of the carbon dioxide associated with cement production, without altering the material's mechanical properties. The resulting concrete sets more quickly and doubles its mechanical performance. This breakthrough could pave the way for the development of carbon-neutral construction materials.
Are you fascinated by the design and construction of towering skyscrapers, magnificent bridges, and sprawling road networks? Do you want to be a part of the team that creates the infrastructure that shapes our world? If so, then studying Civil Engineering at the undergraduate level might be the perfect fit for you! Civil Engineering is a field of study that involves the design, construction, and maintenance of the built environment. This includes everything from buildings and bridges to roads and water systems. Civil Engineers use their technical skills and creativity to solve complex problems and create structures that are safe, efficient, and sustainable. In recent years, there have been several exciting innovations in the field of Civil Engineering. For example, researchers have developed new materials that are stronger and more durable than ever before. They have also used cutting-edge technology like drones and 3D printing to improve the efficiency of construction projects. Some of the most inspiring academic figures in the field include Dr. Henry Petroski, who has written extensively on the history of engineering failures, and Dr. Linda Hanagan, who is a leading expert on sustainable infrastructure. At the undergraduate level, students in Civil Engineering typically take courses in subjects like structural analysis, geotechnical engineering, and transportation planning. They may also have the opportunity to specialize in areas like environmental engineering or construction management. Some exciting examples of real-life Civil Engineering projects include the construction of the Burj Khalifa in Dubai, the Panama Canal expansion, and the redevelopment of the World Trade Center site in New York City. After graduation, there are a wide range of potential career paths for Civil Engineers. They may work for government agencies, construction firms, or consulting firms. Some popular industries for prospective employment include transportation, energy, and water resources. Notable potential employers include the US Army Corps of Engineers, Bechtel Corporation, and Arup Group. Other careers that may be relevant to Civil Engineering include architecture, urban planning, and environmental science. To succeed in this field of study, it is helpful to have strong math and science skills, as well as an interest in problem-solving and design. Effective communication and teamwork skills are also essential, as Civil Engineers often work on projects with large, interdisciplinary teams. If you're ready to take on the challenge of creating the infrastructure of the future, then studying Civil Engineering may be the perfect choice for you!
Did you know that the oldest glue in the world is over 8,000 years old and comes from a cave near the Dead Sea? Ancient people used this glue, made from a mixture of animal bone and plant materials, to waterproof baskets and construct utensils. Today, we have enough types of tape and glue to build and repair almost anything. But have you ever wondered what gives glue and tape their stickiness? Adhesives can be made from synthetic molecules or natural proteins and carbohydrates. In order to work, glue and tape need both adhesive bonds and cohesive bonds. Glue is stronger than tape in terms of absolute strength of adhesive bonds, but no single adhesive works well in all circumstances. Engineers weigh similar factors all the time. Choosing the right glue to withstand the heat inside an engine is a matter of life and death. And though the strength of duct tape's adhesive bonds can't compete with those of epoxy glues, tape does have the advantage of instantaneous stickiness in an emergency. Learning about adhesives can help you understand how things are constructed and repaired, and can even save lives in certain situations.
Biomimicry is a fascinating and innovative concept that is changing the way we approach technology and sustainability. Janine Benyus takes readers on a journey through the natural world, where scientists and inventors are drawing inspiration from nature's most successful ideas to revolutionize our world. From creating materials to healing ourselves, Biomimicry shows how we can learn from the genius of the animal kingdom. This book is a must-read for anyone interested in the future of our planet and the exciting possibilities that lie ahead. Recommended for students of biology, engineering, and environmental studies, Biomimicry offers a fresh perspective on how we can learn from nature to solve some of the world's most pressing problems. Professionals in the fields of medicine, architecture, and technology will also find inspiration in the innovative ideas presented in this book. Additionally, anyone interested in sustainability, conservation, and the future of our planet will appreciate the creative solutions and exciting possibilities explored in Biomimicry. Overall, this book is a valuable resource for anyone looking to explore new and innovative approaches to problem-solving.
The Leaning Tower of Pisa, one of Italy's most iconic structures, has been saved from a date with gravity through decades of interventions. The latest survey shows the tower's health to be much better than forecasted, having crept upright by 4 centimeters in 21 years since stabilisation works were done.
Researchers have powered a microprocessor for a year using blue-green algae and ambient light! This system, comparable in size to an AA battery, has the potential to be a reliable and renewable way to power small devices. The growing Internet of Things needs power, and this system generates energy instead of simply storing it like batteries. The algae system is made of common and recyclable materials, making it easily replicable.
As we look towards the future, it's clear that our world is changing rapidly. One of the most exciting developments is the emergence of floating nations on the sea. These seascrapers will be built using 3D printed biorock, and will be powered by ocean thermal energy conversion. They will allow us to harvest calcium carbonate directly from seawater, and create vast ocean gardens that will reduce ocean acidity and provide environmentally restorative food. The first to seek jobs on these farms will be the poorest billion on Earth, who will come to the blue frontier because floating societies will require refugees to survive economically. These seasteads will restore the environment, enrich the poor and liberate humanity from politicians. By exploring the depths beneath the ocean, we will unlock new discoveries and opportunities that we can't even imagine yet. So let's embrace this new century of seasteading and explore the oceans first, and the stars next.
Are you interested in using your creativity and problem-solving skills to make a positive impact on the world? Then a career in chemical engineering might be right up your alley! Chemical engineering is a field that combines knowledge of chemistry, physics, and mathematics to design and develop new products and processes. As a chemical engineer, you could work in a variety of industries, including pharmaceuticals, energy, food and beverage, and more. For example, you might work on developing new medicines to treat diseases, or on designing more efficient and sustainable ways to produce energy. One exciting aspect of chemical engineering is the potential for innovation and discovery. For example, chemical engineers have been instrumental in developing new materials like graphene, which has the potential to revolutionize industries from electronics to transportation. In terms of day-to-day duties, chemical engineers might be involved in everything from designing experiments and analyzing data to overseeing production processes and troubleshooting problems that arise. There are also many areas of specialization within the field, such as materials science, process design, and environmental engineering. To become a chemical engineer, you'll typically need to earn a bachelor's degree in chemical engineering or a related field. Some popular undergraduate programs include the chemical engineering programs at MIT, UC Berkeley, and the University of Texas at Austin. In addition to technical knowledge, there are a few personal attributes that can be helpful in a career in chemical engineering. These include strong problem-solving skills, attention to detail, and the ability to communicate complex ideas clearly and effectively. As for job prospects, chemical engineering is a field with plenty of opportunities for growth and advancement. Some notable employers include companies like Procter & Gamble, ExxonMobil, and DuPont, as well as government agencies like the Environmental Protection Agency and the Department of Energy. In conclusion, if you're interested in using your scientific knowledge to make a difference in the world, a career in chemical engineering might be the perfect fit for you. With plenty of opportunities for innovation and growth, this field offers the chance to make a real impact on society and the environment. So why not explore this exciting career path today?
Unlock the secrets of microscopic processes with microrobots! Researchers at the University of Pennsylvania and University of Ljubljana are using physical intelligence to manipulate colloidal fluids of nematic liquid crystals with magnetically controlled microrobots. This groundbreaking work, published in Advanced Functional Materials, lays the foundation for understanding small-scale interactions and has exciting potential applications in the optical device industry and beyond.
Are you fascinated by the world of science and engineering? Do you enjoy exploring the properties of different materials and their potential applications? If so, then studying Materials Science at university undergraduate level might just be the perfect fit for you! Materials Science is an interdisciplinary field that combines the principles of physics, chemistry, and engineering to investigate the properties of different materials and develop new materials with specific properties. This field of study is essential in the development of new technologies, from the creation of lighter and stronger materials for aerospace applications to the development of new medical implants that can better integrate with the human body. One of the most exciting aspects of Materials Science is the wide range of research and innovation that is taking place in this field. From the development of new materials for energy storage and conversion to the creation of biomaterials for use in tissue engineering, there is no shortage of fascinating research topics to explore. At the undergraduate level, Materials Science majors can expect to take a variety of modules that cover topics such as materials characterization, materials processing, and materials design. Students will also have the opportunity to specialize in areas such as nanomaterials, biomaterials, and electronic materials, among others. With a degree in Materials Science, graduates can look forward to a range of exciting career opportunities. Some of the key industries for prospective future employment include aerospace, automotive, electronics, and healthcare. Notable employers in these industries include companies such as Boeing, Tesla, Intel, and Johnson & Johnson, among many others. To succeed in this field of study, students should possess a strong foundation in mathematics and physics, as well as a keen interest in materials science and engineering. Additionally, strong problem-solving skills, attention to detail, and a passion for innovation are all essential attributes for success in this field. So, if you're looking for a challenging and rewarding field of study that combines the principles of science and engineering with real-world applications, then look no further than Materials Science!
Have you ever wondered how cities are built? How bridges are constructed? How roads are designed? If you have, then a career in civil engineering might be the perfect fit for you! Civil engineering is a field that involves designing, building, and maintaining infrastructure such as roads, bridges, buildings, and water systems. Civil engineers use their knowledge of mathematics, physics, and materials science to create safe, efficient, and sustainable structures that meet the needs of society. As a civil engineer, you could work on a wide range of projects, from designing a new highway to creating a sustainable water treatment system. You could be responsible for ensuring the safety of thousands of people who use the structures you design and build. Some of the most exciting and meaningful aspects of civil engineering include the ability to make a real difference in people's lives. For example, you could design a new hospital that saves lives, or create a new transportation system that reduces traffic and pollution. You could also work on projects that help communities recover from natural disasters, such as earthquakes or floods. Typical duties of a civil engineer include designing structures, managing construction projects, and conducting inspections to ensure that structures are safe and meet building codes. Civil engineers can also specialize in areas such as geotechnical engineering, environmental engineering, or structural engineering. To become a civil engineer, you typically need a bachelor's degree in civil engineering or a related field. Popular undergraduate programs include civil engineering, environmental engineering, and structural engineering. Some civil engineers also pursue advanced degrees, such as a master's or doctorate, to specialize in a particular area of the field. Helpful personal attributes for civil engineers include strong analytical skills, attention to detail, and the ability to work well in a team. Civil engineers must also be able to communicate effectively with clients, contractors, and other stakeholders. Job prospects for civil engineers are strong, with the field projected to grow by 6% from 2018 to 2028. Civil engineers can find employment in a variety of sectors, including government agencies, consulting firms, and construction companies. Some notable employers include the U.S. Army Corps of Engineers, Bechtel Corporation, and Jacobs Engineering Group. In conclusion, a career in civil engineering offers the opportunity to make a real difference in people's lives, work on exciting and meaningful projects, and have a positive impact on the world around us. If you have a passion for math, science, and design, consider exploring this rewarding and fulfilling career path.
Scientists at A\*STAR's IMRE have successfully upcycled PET plastic waste into polymer electrolytes, which are key components for safer LiBs. This paves the way for a future powered by more sustainable energy, creating a circular economy while combating the mounting plastic waste issue. The team aims to advance the technology for upcycling waste plastics on a larger scale to create components for eco-friendly batteries.
Activities
People and Organizations