Article
More like this
Maria Sibylla Merian was a naturalist and illustrator who defied convention and made significant contributions to the study of entomology, the study of insects. She was one of the first to describe the metamorphosis of insects in detail and portrayed insects surrounded by the plants they relied on, revealing their relationship to the wider ecosystem. Merian's groundbreaking work, 'The Metamorphosis of the Insects of Suriname', published in 1705, documented many species in Suriname's jungle, and its stunning illustrations depicted stages of development of Suriname's veracious caterpillars and vibrant butterflies. Merian's legacy has endured, and her work on the biodiversity of Suriname is still valued by scientists and could show us how some species may adapt to climate change. Learning about Merian's work can inspire students to explore and appreciate the natural world, understand the importance of biodiversity, and encourage them to pursue their passions despite challenges and societal expectations.
Have you ever wandered through a forest and wondered about the secrets that lie within? The Hidden Life of Trees by Peter Wohlleben is a fascinating exploration of the communication and community that exists within forests. Wohlleben shares his love for the woods and explains the incredible processes of life, death, and regeneration that take place in the woodland. Through groundbreaking discoveries, he reveals the previously unknown life of trees and their communication abilities. Discover how trees live together with their children, share nutrients, and create an ecosystem that benefits the whole group. Recommended for environmentalists, biologists, ecologists, and anyone interested in the natural world. The Hidden Life of Trees provides a unique perspective on the life and communication of trees, revealing the intricate processes of the forest ecosystem. It offers insights into the importance of community and the impact of solitary life on trees, which can also be applied to human society. This book is relevant to those interested in environmental sustainability and the impact of eco-friendly practices on the health of our planet. It is also a fascinating read for those who simply appreciate the beauty and complexity of the natural world.
Calcium carbonate may sound like just another chemical compound, but it’s actually the building block for some of the most exquisite and diverse structures found in the ocean, from pearls to shells to coral. Creatures like mollusks use calcium carbonate to carefully construct their shells, controlling their composition at the molecular level to achieve stunning colors and patterns. Learning about the artful ways in which these creatures use calcium carbonate to create their protective structures not only expands our understanding of the natural world but also teaches us about the importance of adaptation and resilience. By exploring this topic further, you can develop a deeper appreciation for the intricacies of the natural world and the ways in which organisms have evolved to survive and thrive in their environments.
Have you ever wondered how we can protect our planet's biodiversity? Do you want to make a difference in the world and work towards preserving our natural resources? If so, a career in Conservation Biology might be perfect for you! Conservation Biology is the study of the natural world and how we can protect and conserve it. Conservation Biologists work to preserve ecosystems, protect endangered species, and promote sustainable development. They use scientific methods to understand the impacts of human activity on the environment and develop strategies to mitigate those impacts. As a Conservation Biologist, you could work in a variety of settings, from government agencies to non-profit organizations to private companies. You might work in the field, collecting data and studying wildlife, or in a lab, analyzing samples and conducting experiments. Some Conservation Biologists focus on specific areas, such as marine biology, forestry, or wildlife management. To become a Conservation Biologist, you typically need a bachelor's degree in biology, ecology, or a related field. Many universities offer undergraduate programs and majors specifically tailored to Conservation Biology. Some popular programs include the Environmental Science and Policy program at the University of Maryland, the Conservation Biology program at the University of California Santa Cruz, and the Wildlife Ecology and Conservation program at the University of Florida. In addition to a strong academic background, helpful personal attributes for a career in Conservation Biology include a passion for the natural world, strong problem-solving skills, and the ability to work well in a team. Conservation Biologists must also be able to communicate effectively, as they often work with a variety of stakeholders, from scientists to policymakers to the general public. Job prospects for Conservation Biologists are strong, with a projected growth rate of 8% over the next decade. There are many potential employers in both the public and private sectors, including government agencies like the U.S. Fish and Wildlife Service and the National Park Service, non-profit organizations like the World Wildlife Fund and the Nature Conservancy, and private companies like Patagonia and The North Face. So if you're passionate about protecting the natural world and want to make a difference in the world, a career in Conservation Biology might be just what you're looking for!
For over a century, dolphins and fishers in Laguna, Brazil have cooperated to catch fish. A new study reveals the mechanics of their partnership, showing how they synchronize their behavior to catch more fish. But this unique fishing practice is facing extinction due to declining fish populations and waning interest from future generations. The study highlights the rarity of interspecies cooperation and the benefits it brings to both humans and wildlife.
Climate change is putting numerous European seabirds at risk. A new conservation guide, led by ZSL and University of Cambridge, offers hope for the future of these important marine birds by assessing their specific needs and actions needed for preservation. Don't let iconic species like the Atlantic puffin disappear from our shores!
Did you know that almost everything around you is being eaten by tiny organisms called microbes? These hordes of bacteria, archaea, and fungi have evolved to break down tough organic material into digestible nutrients. However, there is one material that almost no microbes can biodegrade: plastics. This is because most plastics have only been around since the 1950s, so most microbes haven't had time to evolve enzymes to digest them. As a result, plastics just turn into countless, tiny, indigestible pieces that pollute the environment. However, researchers have discovered microbes that may be able to take a bite out of this growing problem, creating super-enzymes that could break down plastics faster. By exploring the science behind microbes and biodegradability, you can learn how to become part of the solution to this global issue. Not only will you expand your knowledge, but you will also contribute to creating a cleaner, healthier planet.
Have you ever imagined walking alongside a giant, hairy elephant with long tusks and a hump of fat on its back? Meet the woolly mammoth, an extinct species that lived during the Ice Ages. As you learn about the woolly mammoth, you will discover fascinating features such as their two-layered fur and impressive size, which was larger than modern elephants. More than just a fun fact, studying extinct animals like the woolly mammoth can help us understand how Earth's climate and environment have changed over time, and how humans have influenced the planet. By exploring these academic concepts through reading, reflection, writing and self-directed projects, you can develop your intellectual curiosity and creativity while also gaining practical skills in research, critical thinking, and communication.
Stanford-led research finds that the world's largest animals, rorqual whales, owe their size to feeding on tiny creatures in the sea. However, their survival requires a minimum body size, which could put them at risk of extinction due to rapid environmental change. By examining the smallest living species in this group, the authors found that individuals need to grow to at least 4.5 meters to eat enough food to survive. The study sheds light on how climate change might affect krill populations and put certain whale species at risk of extinction.
The Permian-Triassic extinction event that wiped out 95% of life on Earth serves as a model for studying the current biodiversity crisis. Researchers from the University of Bristol, the California Academy of Sciences, and the China University of Geosciences analyzed marine ecosystems before, during, and after the event to understand the series of events that led to ecological destabilization. They found that the rate of species loss today outpaces that during the Great Dying, and stress the importance of considering functional redundancy in modern conservation strategies.
Understanding the science behind the changing colors of leaves in the fall is not only fascinating but also important for our understanding of the natural world around us. The process is triggered by less daylight, causing the old chlorophyll to disappear and yellow and orange pigments to become visible. The intensity of the colors is connected to temperature, and the drier autumn weather triggers a hormone telling the tree to drop its leaves. Evergreens have a waxy coating and contain a chemical like anti-freeze to survive the winter. By learning about these concepts, students can gain a deeper appreciation for the natural world and develop critical thinking skills. Additionally, understanding the science behind fall leaves can inspire students to explore other scientific topics and engage in self-directed projects.
Are you passionate about the environment and the natural world? Do you want to make a difference in the world and help preserve our planet for future generations? If so, a career in ecology might be just the thing for you! Ecologists are scientists who study the relationships between living organisms and their environment. They examine the complex systems that make up our planet, from individual species to entire ecosystems, and work to understand how they function and how they can be conserved and protected. As an ecologist, you could work in a variety of settings, from research labs to fieldwork in remote and exotic locations. You might study the migration patterns of birds, the behavior of marine mammals, or the impact of climate change on plant communities. You might work for government agencies, non-profit organizations, or private companies, helping to develop policies and strategies to protect our natural resources. Typical duties of an ecologist might include conducting field surveys and experiments, analyzing data, writing reports and scientific papers, and presenting findings to colleagues and the public. You might specialize in a particular area of ecology, such as conservation biology, wildlife management, or environmental policy. To become an ecologist, you will typically need at least a bachelor's degree in a relevant field such as biology, ecology, or environmental science. Many employers also prefer candidates with a master's degree or PhD. Popular undergraduate programs and majors include ecology, biology, environmental science, and wildlife management. Helpful personal attributes for a career in ecology include a passion for the natural world, strong analytical and problem-solving skills, and the ability to work independently and as part of a team. You should also have excellent communication skills, both written and verbal. Job prospects for ecologists are strong, with growing demand for professionals who can help address the many environmental challenges facing our planet. Potential employers include government agencies such as the US Environmental Protection Agency, non-profit organizations such as the World Wildlife Fund, and private companies such as environmental consulting firms and renewable energy companies. So if you want to make a difference in the world and help protect our planet, consider a career in ecology. With your passion and dedication, you can help ensure a brighter future for all living things on Earth.
Are fast-lived species taking over the world? Recent research published in Global Change Biology found that fast-lived animals are increasing in numbers while slow-lived animals are in decline, especially in areas of rapid cropland or bare soil expansion. The study raises important questions about how human actions are rewiring natural ecosystems and the far-reaching effects on the natural world.
A team of undergraduate students from Colgate University developed SealNet, a seal facial recognition system that uses deep learning and a convolutional neural network to identify harbor seals. SealNet could be a useful, noninvasive tool for researchers to shed more light on seal behavior, including site fidelity and movements. The software shows promise and could be paired with another photo identification method to identify seals by distinctive markings on their pelage. In the future, an app based on SealNet could allow citizen scientists to contribute to logging seal faces.
Did you know that whales have their own dialects and build communities just like humans do? By studying whale culture, we can learn a lot about ourselves and about our communities. Whales pass down information through their songs, just as humans share information through stories. Interestingly, whales can even remix their songs when they hear a new hit from a different group of whales. But it's not all serious learning - whales also know how to have fun and enjoy life. By exploring academic topics like whale culture, you can expand your knowledge and gain a deeper understanding of the world around you. Plus, it's just plain interesting! So why not dive in and explore new academic topics that inspire you? You never know what you might discover.
Pollinators, such as bees and butterflies, are essential to our planet's biodiversity. They facilitate the reproduction of flowering plants, which in turn support other wildlife and contribute to the overall health of ecosystems. Sadly, pollinators face numerous threats, including habitat loss, pesticides, and climate change. In this write-up, we'll explore the vital role of pollinators in biodiversity conservation, as well as the challenges they face. First, let's define biodiversity. It refers to the variety of life on Earth, including different species, ecosystems, and genetic diversity within species. Pollinators play a crucial role in maintaining this diversity by helping plants reproduce. Over 75% of the world's food crops depend on pollinators, and they also support the growth of wildflowers and other plants that provide habitat for other animals. But pollinators are in trouble. According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), over 16% of vertebrate pollinators, such as birds and bats, are threatened with extinction. In addition, around 40% of invertebrate pollinator species, such as bees and butterflies, are facing the same fate. One leading academic in this field is Dr. Dave Goulson, a professor of biology at the University of Sussex. He has conducted extensive research on the importance of pollinators and the threats they face. In his book, "The Garden Jungle," he emphasizes the role of urban gardens in supporting pollinators and other wildlife. Another academic, Dr. Rachael Winfree from Rutgers University, has studied the impact of habitat fragmentation on pollinator communities. Her research shows that smaller patches of habitat can still support pollinators, but it's crucial to have a diversity of plants and habitats available. So, what can we do to help pollinators? There are many actions we can take, from planting pollinator-friendly gardens to reducing pesticide use. We can also support organizations that work to protect pollinators, such as the Xerces Society and the Pollinator Partnership. In conclusion, pollinators play a vital role in maintaining biodiversity, but they face numerous threats. By learning more about pollinators and taking action to protect them, we can help to ensure a healthy and diverse planet for future generations.
The past is a vast and mysterious land that holds the key to understanding our present. Learning about creatures of the past requires fossils, remains preserved from past geological ages. The totality of all fossils on earth is called the fossil record, and it is the most important window on the past we'll ever have. For a dead animal to fossilize, a number of things must go just right. It's kind of a miracle that we have what we have and know what we know. We've entered a golden era of discovery, and about 50 new dinosaur species are discovered each year, expanding what we know and what we know that we don't know about them, which is amazing. Although many species are lost forever, fossils of mostly soft and gooey species also left us an incredible diversity of shells that tell us an amazing amount about our past. Learning about the past is not only intellectually stimulating, but it also helps us understand the world around us today.
Dive into the mysterious and awe-inspiring world of the ocean with Rachel Carson's The Sea Around Us. This classic work, published in 1951, remains as fresh today as when it first appeared, capturing the allure of the ocean with a compelling blend of imagination and expertise. Carson's rare ability to combine scientific insight with moving, poetic prose catapulted her book to first place on The New York Times best-seller list, where it enjoyed wide attention for thirty-one consecutive weeks. Reintroduced with a new chapter by a leading expert in marine ecology, this illuminating volume provides a timely reminder of both the fragility and the importance of the ocean and the life that abounds within it. Recommended for nature enthusiasts, marine biologists, environmentalists, and anyone interested in exploring the mysteries and wonders of the ocean. This book is a must-read for those concerned about our natural environment and the impact of human activities on the oceans. It offers a comprehensive view of the ocean's history, geology, and ecology, as well as its importance to our planet's ecosystem. The Sea Around Us is relevant to a range of fields of studies, professions, interests, and causes, including marine science, oceanography, environmental studies, conservation, and sustainability. It is a timeless masterpiece that inspires readers to appreciate the beauty and complexity of the natural world.
Do you feel a deep connection with the sea and its inhabitants? Do you find yourself daydreaming about what lies beneath the ocean's surface? If so, a career in oceanography might be perfect for you! As an oceanographer, you'll be studying the ocean, its physical and biological properties, and how it interacts with the planet. You'll work to understand everything from the temperature and salinity of the water, to the movement of currents, the behavior of marine life, and how humans impact the ocean. One of the most appealing aspects of a career in oceanography is the opportunity to work on important environmental issues. For example, you could study how climate change is impacting the ocean and marine life, work to protect endangered species, or research ways to develop sustainable fishing practices. There are also countless fascinating and inspiring examples of real-life oceanographers making a difference. For instance, Sylvia Earle is a marine biologist and explorer who has led more than 100 deep sea expeditions and been instrumental in the creation of marine protected areas. Jacques Cousteau, an oceanographer and explorer, was a pioneer in underwater filmmaking and worked to raise awareness about ocean conservation. As an oceanographer, you'll typically be conducting research and collecting data, analyzing samples in a laboratory setting, and communicating your findings to colleagues, stakeholders, and the public. You could choose to specialize in one of several areas, including biological oceanography, chemical oceanography, physical oceanography, or marine geology. There are also related fields like marine biology, marine ecology, and ocean engineering. To become an oceanographer, you'll typically need at least a bachelor's degree in a relevant field, such as marine biology, oceanography, or environmental science. Many universities offer specialized programs, such as the Marine Science program at the University of Miami or the Oceanography program at the University of Washington. Additionally, internships and field experience can be highly beneficial for gaining practical skills and connections in the field. Helpful personal attributes for an oceanographer include a passion for the ocean and its inhabitants, strong analytical skills, and a willingness to work in a team environment. Additionally, it's important to have good communication skills, as you'll be communicating complex scientific concepts to a variety of audiences. The job prospects for oceanographers are good, with an expected job growth of 7% from 2020 to 2030. There are many potential employers in both the public and private sectors, including government agencies like NOAA (the National Oceanic and Atmospheric Administration) and private companies like Shell or ExxonMobil. You could also work for non-profits like the Ocean Conservancy or research institutions like Woods Hole Oceanographic Institution.
Tardigrades have even been featured in popular culture, including an episode of Star Trek: Discovery, where they were used as a propulsion system for a spaceship. But while tardigrades may seem like science fiction, they are very much a real and fascinating part of the natural world. These tiny, water-dwelling creatures, also known as water bears or moss piglets, have been around for over half a billion years and have evolved some truly remarkable survival strategies. Tardigrades can survive in extreme environments that would kill most other organisms, including temperatures ranging from -272°C to 151°C, pressures six times greater than those at the bottom of the ocean, and even the vacuum of space. They can also survive dehydration, radiation, and exposure to toxins. Tardigrades achieve this impressive feat through a combination of strategies, including the ability to enter a state of suspended animation called cryptobiosis, which allows them to survive without water for years. One of the key factors that enable tardigrades to survive in such extreme conditions is their ability to repair their DNA. Tardigrades have a unique protein called Dsup, which protects their DNA from damage caused by radiation. This protein has even been shown to protect human cells from radiation damage. Dr. Thomas Boothby, a leading tardigrade researcher at the University of Wyoming, has discovered that tardigrades can also produce large amounts of unique proteins called tardigrade-specific intrinsically disordered proteins (TDPs) in response to desiccation. These proteins help protect the tardigrades' cells from damage and prevent them from drying out. Tardigrades are fascinating not just for their survival abilities, but also for their unique biology. They have a complex digestive system, a unique nervous system, and a fascinating reproductive system that involves the transfer of genetic material between individuals. By exploring the science behind these tiny creatures, we can gain a deeper understanding of the natural world and the amazing ways that living organisms can survive and thrive in even the most extreme conditions.
Activities
People and Organizations