Article
More like this
Half a million barrels of DDT waste dumped in the ocean in the 1940s and '50s remain in startlingly high concentrations, spread across a wide swath of seafloor larger than the city of San Francisco. Recent studies have linked the presence of this once-popular pesticide to an aggressive cancer in sea lions, and significant amounts of DDT-related compounds continue to accumulate in California condors and local dolphin populations. With a $5.6-million research boost from Congress, scientists and environmental nonprofits are racing to figure out the extent of the contamination lurking 3,000 feet underwater.
Oxybenzone in sunscreens is disrupting coral reefs, leading to international bans. Scientists are now exploring eco-friendly alternatives like mycosporine-like amino acids (MAAs) found in ocean organisms that offer potent UV-absorbing shields, antioxidants, and anti-inflammatory properties. However, regulatory hurdles and environmental concerns remain. Discover the latest research and innovations in the search for safer and more effective sunscreens.
Did you know that almost everything around you is being eaten by tiny organisms called microbes? These hordes of bacteria, archaea, and fungi have evolved to break down tough organic material into digestible nutrients. However, there is one material that almost no microbes can biodegrade: plastics. This is because most plastics have only been around since the 1950s, so most microbes haven't had time to evolve enzymes to digest them. As a result, plastics just turn into countless, tiny, indigestible pieces that pollute the environment. However, researchers have discovered microbes that may be able to take a bite out of this growing problem, creating super-enzymes that could break down plastics faster. By exploring the science behind microbes and biodegradability, you can learn how to become part of the solution to this global issue. Not only will you expand your knowledge, but you will also contribute to creating a cleaner, healthier planet.
A new study reveals that coral reefs have declined by 50% since the 1950s due to climate change, overfishing, and pollution. The loss of these biodiversity hotspots not only affects marine life but also puts communities and livelihoods at risk. Learn more about the rapid pace of global coral collapse and its implications for indigenous communities and local ecosystems.
The ocean covers over 70% of our planet, yet we know very little about it. With new technology, such as submarine robots, this hidden realm is starting to reveal its secrets. The ocean is home to extraordinary, otherworldly creatures, and boasts some of the highest peaks, deepest canyons, and longest river channels on the planet. However, our impact on the ocean is already being keenly felt, with plastic and pollution causing damage to marine life. By learning more about the ocean, we can better protect and preserve this vital life source. The ocean is key to almost all life on the planet, regulating our climate and providing half the oxygen we breathe. Learning about the ocean's secrets can also help solve urgent problems such as antibiotic resistance. Exploring the ocean can be a fascinating and rewarding journey, with new discoveries waiting to be made.
Imagine a world without humans - what would happen next? This thought experiment highlights the interconnectedness of our world and the impact humans have on it. Without our intervention, nature would take over and endangered species would have a chance to thrive. However, the world would never forget us as we would leave our mark. Learning about the environment and the impact humans have on it is not only intellectually stimulating, but it also has practical benefits. By understanding our impact on the planet, we can make informed decisions and take action to ensure a sustainable future. So, let's explore and discover the fascinating world of environmental science and make a positive impact on the world we live in.
How do you predict tropical cyclones in a data-scarce region? Olivier Bousquet turned to an unlikely source: sea turtles. Tagged with sensors, these hardy creatures provide ocean data that can predict storm intensity and path. The project, known as STORM, has already produced exciting results, attracting the attention of scientists worldwide. Discover how sea turtles are helping us better understand the ocean and prepare for devastating tropical cyclones.
Have you ever wandered through a forest and wondered about the secrets that lie within? The Hidden Life of Trees by Peter Wohlleben is a fascinating exploration of the communication and community that exists within forests. Wohlleben shares his love for the woods and explains the incredible processes of life, death, and regeneration that take place in the woodland. Through groundbreaking discoveries, he reveals the previously unknown life of trees and their communication abilities. Discover how trees live together with their children, share nutrients, and create an ecosystem that benefits the whole group. Recommended for environmentalists, biologists, ecologists, and anyone interested in the natural world. The Hidden Life of Trees provides a unique perspective on the life and communication of trees, revealing the intricate processes of the forest ecosystem. It offers insights into the importance of community and the impact of solitary life on trees, which can also be applied to human society. This book is relevant to those interested in environmental sustainability and the impact of eco-friendly practices on the health of our planet. It is also a fascinating read for those who simply appreciate the beauty and complexity of the natural world.
Plastics are everywhere, and most of them never biologically degrade. This is a major problem for our environment, as plastic waste pollutes natural ecosystems for centuries. Fortunately, there are microbes that may be able to help us solve this growing problem. Scientists have discovered bacteria, also known as plastivores, that contain enzymes capable of breaking down PET polymers, a common type of plastic. However, we still need ways to biologically degrade all the other types of plastic, including abundant PEs and PPs. Researchers are looking for more heat-tolerant plastivores in the planet's most hostile environments and engineering better plastivorous enzymes in the lab. As students, you have the opportunity to learn about this important issue and contribute to finding solutions. By exploring the science behind plastic degradation, you can gain a deeper understanding of how to protect our environment and create a more sustainable future.
Plastic is a synthetic polymer that has completely changed our world. It is lightweight, durable, and can be molded into almost any shape. Unfortunately, plastic has saturated our environment, invaded the animals we eat, and is finding its way into our bodies. Plastic takes between 500 and 1,000 years to break down, yet we use it for things meant to be thrown away. 40% of plastics are used for packaging, and since its invention, we have produced about 8.3 billion metric tons of plastic. 79% of it is still sticking around, and a lot ends up in the ocean, where it outweighs all the fish. Microplastics, pieces smaller than 5 millimeters, have been found in honey, sea salt, beer, tap water, and in the household dust around us. While there is little science about the health risks associated with microplastics, it is safe to say that we have lost control over plastic to a certain extent, which is kind of scary. By learning more about plastic, we can take steps to reduce its impact on our environment and our health.
Are you passionate about the environment and the natural world? Do you want to make a difference in the world and help preserve our planet for future generations? If so, a career in ecology might be just the thing for you! Ecologists are scientists who study the relationships between living organisms and their environment. They examine the complex systems that make up our planet, from individual species to entire ecosystems, and work to understand how they function and how they can be conserved and protected. As an ecologist, you could work in a variety of settings, from research labs to fieldwork in remote and exotic locations. You might study the migration patterns of birds, the behavior of marine mammals, or the impact of climate change on plant communities. You might work for government agencies, non-profit organizations, or private companies, helping to develop policies and strategies to protect our natural resources. Typical duties of an ecologist might include conducting field surveys and experiments, analyzing data, writing reports and scientific papers, and presenting findings to colleagues and the public. You might specialize in a particular area of ecology, such as conservation biology, wildlife management, or environmental policy. To become an ecologist, you will typically need at least a bachelor's degree in a relevant field such as biology, ecology, or environmental science. Many employers also prefer candidates with a master's degree or PhD. Popular undergraduate programs and majors include ecology, biology, environmental science, and wildlife management. Helpful personal attributes for a career in ecology include a passion for the natural world, strong analytical and problem-solving skills, and the ability to work independently and as part of a team. You should also have excellent communication skills, both written and verbal. Job prospects for ecologists are strong, with growing demand for professionals who can help address the many environmental challenges facing our planet. Potential employers include government agencies such as the US Environmental Protection Agency, non-profit organizations such as the World Wildlife Fund, and private companies such as environmental consulting firms and renewable energy companies. So if you want to make a difference in the world and help protect our planet, consider a career in ecology. With your passion and dedication, you can help ensure a brighter future for all living things on Earth.
Climate change is putting numerous European seabirds at risk. A new conservation guide, led by ZSL and University of Cambridge, offers hope for the future of these important marine birds by assessing their specific needs and actions needed for preservation. Don't let iconic species like the Atlantic puffin disappear from our shores!
Understanding the science behind the changing colors of leaves in the fall is not only fascinating but also important for our understanding of the natural world around us. The process is triggered by less daylight, causing the old chlorophyll to disappear and yellow and orange pigments to become visible. The intensity of the colors is connected to temperature, and the drier autumn weather triggers a hormone telling the tree to drop its leaves. Evergreens have a waxy coating and contain a chemical like anti-freeze to survive the winter. By learning about these concepts, students can gain a deeper appreciation for the natural world and develop critical thinking skills. Additionally, understanding the science behind fall leaves can inspire students to explore other scientific topics and engage in self-directed projects.
Have you ever imagined walking alongside a giant, hairy elephant with long tusks and a hump of fat on its back? Meet the woolly mammoth, an extinct species that lived during the Ice Ages. As you learn about the woolly mammoth, you will discover fascinating features such as their two-layered fur and impressive size, which was larger than modern elephants. More than just a fun fact, studying extinct animals like the woolly mammoth can help us understand how Earth's climate and environment have changed over time, and how humans have influenced the planet. By exploring these academic concepts through reading, reflection, writing and self-directed projects, you can develop your intellectual curiosity and creativity while also gaining practical skills in research, critical thinking, and communication.
Are you fascinated by the natural world and want to explore the mysteries of the universe? Then the study of Natural Sciences might be the perfect fit for you! Natural Sciences is a broad field of study that encompasses a wide range of scientific disciplines, including biology, chemistry, physics, geology, and astronomy. It is an interdisciplinary field that seeks to understand the natural world and the laws that govern it. One of the most appealing aspects of studying Natural Sciences is the opportunity to make groundbreaking discoveries that can change the world. From the discovery of penicillin by Alexander Fleming to the development of the theory of relativity by Albert Einstein, Natural Sciences has produced some of the most significant innovations in human history. And with new technologies and research methods emerging every day, the possibilities for future discoveries are endless. At the undergraduate level, students can choose from a variety of majors and modules that allow them to specialize in a particular area of Natural Sciences. For example, a biology major might focus on genetics or ecology, while a physics major might specialize in astrophysics or quantum mechanics. And for those who want to take their studies even further, graduate programs in Natural Sciences offer a wide range of research opportunities and specialized areas of study. But what can you do with a degree in Natural Sciences? The answer is almost anything! Graduates of Natural Sciences are highly sought after in a variety of industries, including healthcare, technology, energy, and environmental science. Some of the most notable employers in these industries include NASA, Tesla, and the World Health Organization. To succeed in Natural Sciences, you need to have a curious mind, a passion for discovery, and a strong foundation in math and science. You should also be comfortable with experimentation and problem-solving, as these are the skills that will help you make groundbreaking discoveries and contribute to the advancement of human knowledge. So if you're ready to explore the mysteries of the universe and make a difference in the world, consider studying Natural Sciences. It's a field that offers endless possibilities for discovery and innovation, and it's sure to be a rewarding and fulfilling career path.
Have you ever wondered how we can protect our planet's biodiversity? Do you want to make a difference in the world and work towards preserving our natural resources? If so, a career in Conservation Biology might be perfect for you! Conservation Biology is the study of the natural world and how we can protect and conserve it. Conservation Biologists work to preserve ecosystems, protect endangered species, and promote sustainable development. They use scientific methods to understand the impacts of human activity on the environment and develop strategies to mitigate those impacts. As a Conservation Biologist, you could work in a variety of settings, from government agencies to non-profit organizations to private companies. You might work in the field, collecting data and studying wildlife, or in a lab, analyzing samples and conducting experiments. Some Conservation Biologists focus on specific areas, such as marine biology, forestry, or wildlife management. To become a Conservation Biologist, you typically need a bachelor's degree in biology, ecology, or a related field. Many universities offer undergraduate programs and majors specifically tailored to Conservation Biology. Some popular programs include the Environmental Science and Policy program at the University of Maryland, the Conservation Biology program at the University of California Santa Cruz, and the Wildlife Ecology and Conservation program at the University of Florida. In addition to a strong academic background, helpful personal attributes for a career in Conservation Biology include a passion for the natural world, strong problem-solving skills, and the ability to work well in a team. Conservation Biologists must also be able to communicate effectively, as they often work with a variety of stakeholders, from scientists to policymakers to the general public. Job prospects for Conservation Biologists are strong, with a projected growth rate of 8% over the next decade. There are many potential employers in both the public and private sectors, including government agencies like the U.S. Fish and Wildlife Service and the National Park Service, non-profit organizations like the World Wildlife Fund and the Nature Conservancy, and private companies like Patagonia and The North Face. So if you're passionate about protecting the natural world and want to make a difference in the world, a career in Conservation Biology might be just what you're looking for!
Do you love nature and want to help protect it for future generations? If so, a career as a Conservation Scientist might be perfect for you! Conservation Scientists work to preserve and protect natural resources, such as forests, wildlife, and waterways, by conducting research, developing plans, and implementing strategies for conservation. Imagine spending your days exploring the great outdoors, studying the behavior of wildlife, and developing plans to protect endangered species. Conservation Scientists work with a variety of organizations, including government agencies, non-profits, and private companies, to ensure that our natural resources are preserved for future generations. As a Conservation Scientist, your duties may include conducting field research, analyzing data, developing management plans, and collaborating with other professionals, such as foresters, wildlife biologists, and environmental engineers. You may specialize in areas such as wildlife management, forestry, or fisheries, and work in a variety of settings, from national parks to private consulting firms. To become a Conservation Scientist, you typically need a Bachelor's degree in a related field, such as biology, ecology, or environmental science. Many universities offer specialized programs in conservation biology or natural resource management, where you can gain hands-on experience in the field. In addition to formal education, there are several personal attributes that can be helpful in a career as a Conservation Scientist. These include a passion for nature, strong communication skills, and the ability to work independently and as part of a team. Job prospects for Conservation Scientists are strong, with a projected growth rate of 8% over the next decade. There are many potential employers in both the public and private sectors, including government agencies such as the National Park Service and the U.S. Forest Service, non-profits such as the Nature Conservancy and the World Wildlife Fund, and private consulting firms. So if you're passionate about nature and want to make a difference in the world, consider a career as a Conservation Scientist. With the right education and training, you can help protect our natural resources for generations to come.
Are you curious about the hidden waterways that run beneath London's busy streets? Did you know that many of London's neighborhoods are named after these waterways? Discover the fascinating story of London's "secret" rivers, their historical significance, and how they are being restored to improve the environment and the lives of millions of people in this inspiring article from BBC. Follow the journey of volunteer groups who are revitalizing these waterways, creating habitats for wildlife, and reducing flood risks across the city.
Calcium carbonate may sound like just another chemical compound, but it’s actually the building block for some of the most exquisite and diverse structures found in the ocean, from pearls to shells to coral. Creatures like mollusks use calcium carbonate to carefully construct their shells, controlling their composition at the molecular level to achieve stunning colors and patterns. Learning about the artful ways in which these creatures use calcium carbonate to create their protective structures not only expands our understanding of the natural world but also teaches us about the importance of adaptation and resilience. By exploring this topic further, you can develop a deeper appreciation for the intricacies of the natural world and the ways in which organisms have evolved to survive and thrive in their environments.
As a society, we rely heavily on oil, but this addiction has led to environmental disasters like oil spills. However, nature has a way of cleaning up after us. Microbes, tiny bacteria that evolved to take advantage of oil and gas seeping from the sea floor, have been eating up oil spills for eons. In fact, a big bloom of microbes ate most of the 4.1 million barrels of oil spilt by BP's Macondo well in the Gulf of Mexico. These microbes are not only oil-eaters, but they also eat plastics, making them a potential solution to the Great Pacific Garbage Patch. Scientists are working on enhancing microbes' ability to eat oil and plastic, which could help us clean up our messes faster. Learning about these microbes and how they can benefit us is not only intellectually stimulating, but it also has practical implications for our planet's health.
Activities