Article
More like this
Chemical fertilizers are widely used in modern agriculture to boost crop yields. However, these fertilizers are not without risk. In this write-up, we will explore the dangers of chemical fertilizers, including their impact on the environment and human health. We will also examine the alternatives to chemical fertilizers and the role of specific academics in this field. Chemical fertilizers can have a negative impact on the environment, particularly when they are not used in moderation. Excessive use of nitrogen fertilizers can lead to nitrate pollution in waterways, harming aquatic life and posing risks to human health. This pollution can also contribute to algal blooms, which can lead to the formation of dead zones in water bodies. In addition, the production and use of chemical fertilizers can contribute to greenhouse gas emissions, exacerbating climate change. The negative impacts of chemical fertilizers are also beyond human health. Exposure to high levels of fertilizer dust can cause respiratory problems, while exposure to nitrates in drinking water has been linked to an increased risk of certain types of cancer. Pesticides that are often used in conjunction with chemical fertilizers can also pose risks to human health. There are a number of alternatives to chemical fertilizers that can reduce their negative impact. These include organic and natural fertilizers, such as compost and manure, as well as crop rotation and cover crops. In addition, precision agriculture techniques can help farmers apply fertilizers more efficiently and effectively, reducing the risk of pollution. Leading academics in the field of sustainable agriculture have made significant contributions to our understanding of the dangers of chemical fertilizers and the alternatives that exist. For example, Dr. David Montgomery, a geologist at the University of Washington, has written extensively on the impact of industrial agriculture on soil health, and the benefits of regenerative agriculture practices. Similarly, Dr. Rattan Lal, a soil scientist at Ohio State University, has focused on the use of carbon sequestration techniques in agriculture to reduce greenhouse gas emissions. Chemical fertilizers pose a significant risk to the environment and human health, but there are alternatives that can be used to reduce these risks. By exploring the work of leading academics in the field, we can gain a deeper understanding of these issues and work to promote sustainable agriculture practices.
Do you know where your food comes from? In 'The Omnivore's Dilemma: A Natural History of Four Meals', Michael Pollan takes you on a journey from the industrial food complex to foraging in the wild, revealing the hidden costs of our modern food systems. As you follow each food chain, you'll learn how our eating choices impact not only our own health but also the health of the environment. Pollan's insightful exploration of our relationship with food will make you question everything you thought you knew about what's on your plate. Recommended for anyone interested in food systems, environmental sustainability, health, and ethics. This book is relevant to students interested in fields such as agriculture, biology, nutrition, environmental studies, and ethics. It is also relevant to anyone who cares about the impact of their food choices on their health and the health of the planet. The book challenges readers to think critically about the industrial food complex and consider alternative ways of producing and consuming food that prioritize sustainability and ethical considerations.
Billions of animals are raised and slaughtered in factory farms every year, in conditions likely to cause extreme suffering. Many experts believe animals have conscious experiences and can experience pain. We tend to value the suffering of humans more than animals, which could be a form of "speciesism". There are things we can do to help solve this problem, including persuading people to change their diets, lobbying for better welfare standards for animals, and developing alternatives to animal products. Cost-effectiveness analyses suggest there are opportunities to have large-scale positive impacts on animal welfare, with corporate campaigns seeming particularly promising.
Pesticides not targeted at flowers may pose a hidden threat to pollinators, according to new research from Trinity and DCU. The study, the first of its kind in Ireland, found residues of several pesticides in the nectar and pollen of both crop and wild plants, with some chemicals lingering for years after application. The findings have implications for the health of bees and other pollinators, as well as for ecosystem function, crop production, and human health.
Have you ever heard of growing plants without soil? It's possible with hydroponics and aquaponics! These innovative methods of agriculture have gained popularity in recent years for their ability to produce high yields of fresh produce while using less space, water, and pesticides than traditional farming. In this write-up, we'll explore the fascinating world of hydroponics and aquaponics, diving into the concepts, benefits, and contributions from leading academics in the field. Hydroponics is the practice of growing plants in nutrient-rich water instead of soil. This method can be done in a variety of ways, from a simple jar with water and plant roots to complex systems using pumps, pipes, and controlled environments. Aquaponics takes it a step further by combining hydroponics with fish farming. In this closed-loop system, fish waste provides nutrients for plants, while plants naturally filter and clean the water for the fish. Did you know that hydroponics and aquaponics can yield up to 10 times more produce than traditional farming methods? This is because the plants receive precisely the nutrients they need, and water is recycled efficiently. Additionally, these methods can be done year-round, in any climate, and with less land space. It's no wonder that hydroponics and aquaponics are gaining attention from both commercial farmers and hobbyists alike. One leading academic in this field is Dr. Dickson Despommier, a professor at Columbia University. He's written extensively on vertical farming, an innovative form of agriculture that takes hydroponics to new heights by stacking layers of plants vertically. Another notable academic is Dr. Rakocy from the University of the Virgin Islands, who pioneered the development of modern aquaponics in the 1980s. In conclusion, hydroponics and aquaponics offer an innovative and sustainable solution to traditional farming methods. With its ability to produce more fresh produce with less resources, it's no wonder why this field is gaining traction. By exploring this topic further, you can discover new and exciting ways to apply academic concepts to real-world problems.
In "Animal, Vegetable, Miracle," Barbara Kingsolver and her family embark on a year-long journey to live off food from their own neighborhood, shunning the industrial-food pipeline. This memoir-journalistic investigation hybrid will take you on a thought-provoking adventure, revealing the true meaning of "you are what you eat." Kingsolver's enthralling narrative will open your eyes to the importance of locally sourced food, sustainability, and self-sufficiency. Recommended for environmentalists, foodies, sustainability advocates, and anyone interested in the impact of food on our health and the planet. This book will also appeal to those studying agriculture, ecology, and environmental science. Kingsolver's memoir will inspire readers to rethink their food choices and consider the benefits of locally sourced produce. Additionally, this book will be relevant to those interested in self-sufficiency and homesteading.
The invasion of purple sea urchins has devastated kelp forests along the coasts of California, Japan, Norway, Canada, and Tasmania, leaving behind barren underwater landscapes that can last for decades. However, a Norwegian company called Urchinomics has a plan to restore kelp forests and create a new fishery for overpopulated urchins through "urchin ranching." Urchin ranching could potentially create a local speciality dining market for purple urchin uni, but it will take an aggressive and thorough approach to remove enough urchins to restore kelp forests.
Did you know that approximately 40% of the global fish catch is discarded as bycatch, unintentionally caught fish that are not the target of the fishing operation? This means that a significant amount of fish, which could be used for food and other purposes, is being wasted. Fortunately, researchers and industry leaders are coming up with innovative solutions to turn bycatch into valuable resources. Bycatch can be transformed into fish meal, used as fertilizer, or even turned into high-end seafood products. One of the leading experts in this field is Dr. Daniel Pauly, a fisheries scientist and professor at the University of British Columbia. Dr. Pauly is known for his work on developing methods to estimate global fish catches, and he has also been a vocal advocate for reducing bycatch and promoting sustainable fishing practices. Another academic making significant contributions in this area is Dr. Karin Limburg, a fisheries biologist and professor at the SUNY College of Environmental Science and Forestry. Dr. Limburg has researched the use of bycatch for fertilizer and has found that it can be a valuable source of nutrients for crops. In addition to these experts, industry leaders such as FishWise, a nonprofit seafood sustainability consultancy, are also working to reduce bycatch and promote sustainable fishing practices. They work with major seafood retailers and distributors to improve the sustainability of the seafood supply chain. By exploring this topic further, you can develop a deeper understanding of the complex issues facing our oceans and contribute to finding innovative solutions for a more sustainable future.
Are you passionate about the environment and the food we eat? Do you want to make a difference in the world by promoting sustainability and healthy living? Then a career in organic farming might be just what you're looking for! Organic farming is a field that involves growing crops and raising animals without the use of synthetic pesticides, fertilizers, or genetic modification. It's a method of agriculture that prioritizes the health of the soil, the environment, and the people who consume the food. Organic farmers work hard to ensure that their products are healthy, sustainable, and environmentally friendly. As an organic farmer, you'll have the opportunity to work outdoors, get your hands dirty, and make a real impact on the world. You'll be responsible for planting and harvesting crops, caring for animals, and managing the land. You'll also have the chance to experiment with new techniques and methods to improve your yields and protect the environment. There are many different areas of specialization within organic farming, including crop production, animal husbandry, and farm management. You could choose to focus on growing fruits and vegetables, raising livestock, or running a farm business. You could also explore related fields like agronomy, soil science, and sustainable agriculture. To become an organic farmer, you'll need a strong background in agriculture, biology, or environmental science. Many colleges and universities offer undergraduate programs in these fields, including majors like Agriculture, Environmental Studies, and Sustainable Agriculture. You'll also need to gain hands-on experience through internships, apprenticeships, or working on a farm. Helpful personal attributes for a career in organic farming include a love of the outdoors, physical stamina, and a willingness to learn and adapt. You'll need to be able to work independently and as part of a team, and to communicate effectively with customers, suppliers, and other stakeholders. Job prospects in organic farming are strong, with growing demand for organic products around the world. You could work for a small family farm, a large commercial operation, or a government agency focused on sustainable agriculture. Some notable employers in the field include Whole Foods Market, Stonyfield Farm, and the USDA's National Organic Program. So if you're looking for a career that combines your passion for the environment, healthy living, and making a difference in the world, consider a career in organic farming. It's a challenging and rewarding field that offers plenty of opportunities for growth and innovation.
In today's world, it's easy to take for granted the food we eat and where it comes from. However, understanding the complex supply chain behind the fruits and vegetables we purchase can have significant intellectual and practical benefits. In times of crisis, like during the COVID-19 pandemic, supply chains are stretched thin, and it becomes more important than ever to explore alternative ways of growing food. Enter high-tech urban agriculture, a revolutionary concept that could transform the way we produce and consume food. With vertical farms popping up in cities worldwide, growing crops closer to where they are eaten is becoming a reality. These systems provide numerous benefits, from being healthier and more sustainable to containing no pesticides. By exploring these cutting-edge concepts further, students can gain knowledge about sustainable practices, future technologies, and global supply chains.
If you love the outdoors, have a passion for science, and want to make a difference in the world, then a career in Agricultural Sciences might be just what you're looking for! Agricultural Sciences is a field that encompasses the study of plants, animals, and the environment, and how they all interact with each other. It's a fascinating area of study that combines biology, chemistry, and engineering to help us better understand the natural world and how we can use it to improve our lives. As an Agricultural Scientist, you could work in a variety of roles, from researching new crop varieties and developing sustainable farming practices, to studying animal behaviour and improving livestock breeding techniques. You might even work in the food industry, helping to develop new products or improve existing ones. Some of the most exciting aspects of this field include the potential to work with cutting-edge technology, such as drones and sensors, to gather data and make informed decisions. You could also have the opportunity to travel the world, working on projects in developing countries and helping to improve food security and sustainability. Typical duties in Agricultural Sciences might include conducting experiments and field trials, analyzing data, writing reports and research papers, and presenting findings to colleagues and stakeholders. You might also work closely with farmers, ranchers, and other agricultural professionals to help them implement new practices and technologies. There are many areas of specialization within Agricultural Sciences, including plant breeding, soil science, animal science, and food science. Other related fields include environmental science, ecology, and biotechnology. To pursue a career in Agricultural Sciences, you'll typically need a Bachelor's degree in a relevant field, such as Agricultural Science, Biology, or Environmental Science. Some popular undergraduate programs and majors include Crop Science, Animal Science, and Food Science. Helpful personal attributes for success in this field include a strong work ethic, attention to detail, good communication skills, and a passion for learning. You should also be comfortable working both independently and as part of a team. Job prospects in Agricultural Sciences are generally good, with a growing demand for professionals who can help address global challenges such as climate change, food security, and sustainable agriculture. Potential employers include government agencies, research institutions, and private companies such as Monsanto, Syngenta, and Cargill. So if you're looking for a rewarding and exciting career that combines science and nature, consider a career in Agricultural Sciences!
The making of chocolate is a primitive and unpredictable process involving wild rainforest insects, fungi, and microbes. Discover how the microbiome of cacao trees, tiny midges, and fermentation contribute to the $110-billion chocolate industry. Learn how researchers are working to standardize cacao-making and develop cacao-fermentation "starters."
Plants have been evolving for millions of years and have developed incredible adaptations to survive in their environments. One of the most impressive adaptations is drought resistance. In this write-up, we will explore the fascinating world of plant evolution and the incredible ways that plants have adapted to survive in dry environments. Did you know that there are plants that can survive without water for years? The cactus is one such plant that has developed unique adaptations to survive in the harsh desert environment. Its thick stems store water, and its shallow roots can quickly absorb moisture when it rains. The cactus also has small leaves that reduce water loss through transpiration and spines that provide shade to the stem, reducing water loss even further. Another interesting example of drought resistance in plants is the succulent. Succulents store water in their leaves, which become plump when water is available and shrink when water is scarce. They also have shallow roots that spread widely to quickly absorb moisture when it rains. Leading academics in the field of plant evolution and drought resistance have made significant contributions to our understanding of these adaptations. For example, Dr. Christine A. Beveridge has studied the molecular mechanisms behind drought resistance in plants and have identified genes that play a crucial role in this process. Her work has led to the development of drought-resistant crops, which have the potential to improve food security in dry regions. In conclusion, the world of plant evolution and drought resistance is full of fascinating facts, stories, and examples. By exploring this topic independently, students can deepen their understanding of the amazing adaptations that plants have developed over millions of years to survive in their environments.
Are you passionate about the environment, sustainability, and food production? Do you want to make a real difference in the world? Then studying Agricultural Sciences at university might be the perfect fit for you! Agricultural Sciences is a fascinating field that encompasses a wide range of topics, from plant and animal biology to soil science, economics, and policy. It's a field that is constantly evolving, with new research and innovations being developed all the time to address the challenges facing our planet. One of the most exciting aspects of Agricultural Sciences is the hands-on, real-world experience you'll gain. You'll have the opportunity to work on research projects and internships that will allow you to get your hands dirty and make a real impact. For example, you might work on developing new crop varieties that are more resistant to pests and diseases, or you might help design sustainable farming practices that reduce the environmental impact of agriculture. There are also many inspiring academic figures in this field, such as Norman Borlaug, who is known as the father of the Green Revolution for his work in developing high-yield crops that helped feed millions of people around the world. Other notable figures include Rachel Carson, who is credited with starting the modern environmental movement with her book Silent Spring, and Vandana Shiva, who is a leading voice in the movement for sustainable agriculture and food systems. At the undergraduate level, you'll typically take courses in subjects like plant biology, animal science, agricultural economics, and environmental policy. You'll also have the opportunity to specialize in areas like sustainable agriculture, food science, or agribusiness. And there are many exciting career paths you can pursue with a degree in Agricultural Sciences, from working in research and development for companies like Monsanto or Syngenta, to working for government agencies like the USDA or the EPA, to starting your own sustainable farming business. To succeed in this field, you'll need to be passionate about the environment and sustainability, as well as have a strong background in science and math. You'll also need to be a creative problem-solver, able to think outside the box to come up with innovative solutions to the challenges facing our planet. So if you're ready to make a real difference in the world, consider studying Agricultural Sciences at university. It's a field that is both intellectually stimulating and deeply rewarding, and it offers endless opportunities to make a positive impact on our planet and its people.
As concern about the impacts of pesticides on human health and the environment grows, so does the importance of regulating these toxic chemicals. However, the regulation of pesticides is a complex issue that is often influenced by industry stakeholders. In this write-up, we will investigate the tangled web of pesticide regulation, exploring the role of industry influence and the ethics of regulatory decisions. To begin, let's look at some statistics on pesticide regulation. In the US, the Environmental Protection Agency (EPA) is responsible for regulating pesticides. However, the EPA's regulatory process has been criticized for its reliance on industry-funded data and a lack of transparency. In fact, a 2015 investigation by the Center for Public Integrity found that industry influence had led the EPA to weaken or delay regulations on dozens of pesticides. The effects of pesticide use on human health are also concerning. Pesticides have been linked to a range of health issues, including cancer, developmental problems, and neurological disorders. Children, in particular, are at risk, as their developing bodies are more vulnerable to the toxic effects of pesticides. One academic who has contributed greatly to this field is Dr. Tyrone Hayes, a biologist and expert on the effects of pesticides on amphibians. Dr. Hayes has documented the harmful effects of the herbicide atrazine, which is widely used in agriculture, on the development of frogs. His research has also shown how industry pressure can affect regulatory decisions. Another key concept to understand is the precautionary principle, which holds that in the face of uncertainty, precautionary measures should be taken to protect public health and the environment. This principle is often invoked in discussions of pesticide regulation, as the potential risks of pesticides are not always fully understood.
Pollinators, such as bees and butterflies, are essential to our planet's biodiversity. They facilitate the reproduction of flowering plants, which in turn support other wildlife and contribute to the overall health of ecosystems. Sadly, pollinators face numerous threats, including habitat loss, pesticides, and climate change. In this write-up, we'll explore the vital role of pollinators in biodiversity conservation, as well as the challenges they face. First, let's define biodiversity. It refers to the variety of life on Earth, including different species, ecosystems, and genetic diversity within species. Pollinators play a crucial role in maintaining this diversity by helping plants reproduce. Over 75% of the world's food crops depend on pollinators, and they also support the growth of wildflowers and other plants that provide habitat for other animals. But pollinators are in trouble. According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), over 16% of vertebrate pollinators, such as birds and bats, are threatened with extinction. In addition, around 40% of invertebrate pollinator species, such as bees and butterflies, are facing the same fate. One leading academic in this field is Dr. Dave Goulson, a professor of biology at the University of Sussex. He has conducted extensive research on the importance of pollinators and the threats they face. In his book, "The Garden Jungle," he emphasizes the role of urban gardens in supporting pollinators and other wildlife. Another academic, Dr. Rachael Winfree from Rutgers University, has studied the impact of habitat fragmentation on pollinator communities. Her research shows that smaller patches of habitat can still support pollinators, but it's crucial to have a diversity of plants and habitats available. So, what can we do to help pollinators? There are many actions we can take, from planting pollinator-friendly gardens to reducing pesticide use. We can also support organizations that work to protect pollinators, such as the Xerces Society and the Pollinator Partnership. In conclusion, pollinators play a vital role in maintaining biodiversity, but they face numerous threats. By learning more about pollinators and taking action to protect them, we can help to ensure a healthy and diverse planet for future generations.
Alaskan fisherman Dune Lankard has witnessed the devastating impacts of natural and man-made disasters on his industry and homeland, from earthquakes to oil spills. Now, he's turning to regenerative ocean farming to mitigate the effects of climate change and create a new regenerative economy based on conservation, restoration, and mitigation. This burgeoning concept, developed by Canadian commercial fisherman turned ocean farmer Bren Smith, involves growing seaweed and shellfish in small underwater gardens, and is touted as the new farming model of the future. Explore the fascinating intersection of traditional fishing practices and sustainable ocean farming in this thought-provoking article.
Are you interested in the science behind our food and the environment? Do you want to make a difference in the world by creating sustainable agricultural practices? If so, a career in Agricultural Sciences might be the perfect fit for you! Agricultural Sciences is a broad field that encompasses everything from plant and animal sciences to soil science and agricultural economics. It is a field that is constantly evolving, with new technologies and techniques being developed to improve crop yields and reduce environmental impact. As an Agricultural Scientist, you could be involved in a variety of tasks, including conducting research on crop genetics, developing new farming techniques, or working on policy development to improve agricultural practices. You could specialize in areas such as animal husbandry, crop management, or soil science, among others. To pursue a career in Agricultural Sciences, you will typically need a bachelor's degree in a related field such as Agricultural Science, Environmental Science, or Biology. Some popular undergraduate programs and majors include Agronomy, Horticulture, and Agricultural Engineering. In addition to a strong academic background, there are certain personal attributes that can be helpful in this field. These include a passion for the environment, strong problem-solving skills, and excellent communication skills. The job prospects for Agricultural Scientists are promising, with a growing demand for professionals in this field. You could work for a variety of employers, including government agencies, universities, or private companies. Some notable employers include the United States Department of Agriculture (USDA), Monsanto, and the World Bank. A career in Agricultural Sciences can be both rewarding and fulfilling, allowing you to make a positive impact on the world around you. So why not explore this exciting field further and see where it could take you?
Scientists are investigating how feeding seaweed to cows could help reduce their methane emissions, which contribute to the climate crisis. Methane is a potent greenhouse gas, and cows like Nugget, a milk-producing Jersey cow at the University of New Hampshire's Organic Dairy Research Farm, contribute significantly to its production. Researchers are testing various species of seaweed, which have been shown to reduce cow burps, and measuring their impact on methane output. The goal is to find a seaweed species that is optimal for both methane reduction, cow and human health, while also being environmentally sustainable to grow at scale.
In just 70 years, the UK's landscape has undergone drastic changes, with non-native species thriving and native plants dwindling due to modern agriculture and climate change. The Plant Atlas 2020, produced by the Botanical Society of Britain and Ireland, reveals the catastrophic loss of grasslands, heathlands, and other habitats that would shock those brought up in the 1950s. The survey also highlights the impact of climate change on plant life and calls for stronger laws and sustainable land management to protect flora. Sir David Attenborough presents a new BBC documentary, Wild Isles, on the subject.
Activities
Academic Extensions
Thought Experiments