Article
More like this
Did you know that approximately 40% of the global fish catch is discarded as bycatch, unintentionally caught fish that are not the target of the fishing operation? This means that a significant amount of fish, which could be used for food and other purposes, is being wasted. Fortunately, researchers and industry leaders are coming up with innovative solutions to turn bycatch into valuable resources. Bycatch can be transformed into fish meal, used as fertilizer, or even turned into high-end seafood products. One of the leading experts in this field is Dr. Daniel Pauly, a fisheries scientist and professor at the University of British Columbia. Dr. Pauly is known for his work on developing methods to estimate global fish catches, and he has also been a vocal advocate for reducing bycatch and promoting sustainable fishing practices. Another academic making significant contributions in this area is Dr. Karin Limburg, a fisheries biologist and professor at the SUNY College of Environmental Science and Forestry. Dr. Limburg has researched the use of bycatch for fertilizer and has found that it can be a valuable source of nutrients for crops. In addition to these experts, industry leaders such as FishWise, a nonprofit seafood sustainability consultancy, are also working to reduce bycatch and promote sustainable fishing practices. They work with major seafood retailers and distributors to improve the sustainability of the seafood supply chain. By exploring this topic further, you can develop a deeper understanding of the complex issues facing our oceans and contribute to finding innovative solutions for a more sustainable future.
In today's world, it's easy to take for granted the food we eat and where it comes from. However, understanding the complex supply chain behind the fruits and vegetables we purchase can have significant intellectual and practical benefits. In times of crisis, like during the COVID-19 pandemic, supply chains are stretched thin, and it becomes more important than ever to explore alternative ways of growing food. Enter high-tech urban agriculture, a revolutionary concept that could transform the way we produce and consume food. With vertical farms popping up in cities worldwide, growing crops closer to where they are eaten is becoming a reality. These systems provide numerous benefits, from being healthier and more sustainable to containing no pesticides. By exploring these cutting-edge concepts further, students can gain knowledge about sustainable practices, future technologies, and global supply chains.
Do you know where your food comes from? In 'The Omnivore's Dilemma: A Natural History of Four Meals', Michael Pollan takes you on a journey from the industrial food complex to foraging in the wild, revealing the hidden costs of our modern food systems. As you follow each food chain, you'll learn how our eating choices impact not only our own health but also the health of the environment. Pollan's insightful exploration of our relationship with food will make you question everything you thought you knew about what's on your plate. Recommended for anyone interested in food systems, environmental sustainability, health, and ethics. This book is relevant to students interested in fields such as agriculture, biology, nutrition, environmental studies, and ethics. It is also relevant to anyone who cares about the impact of their food choices on their health and the health of the planet. The book challenges readers to think critically about the industrial food complex and consider alternative ways of producing and consuming food that prioritize sustainability and ethical considerations.
The invasion of purple sea urchins has devastated kelp forests along the coasts of California, Japan, Norway, Canada, and Tasmania, leaving behind barren underwater landscapes that can last for decades. However, a Norwegian company called Urchinomics has a plan to restore kelp forests and create a new fishery for overpopulated urchins through "urchin ranching." Urchin ranching could potentially create a local speciality dining market for purple urchin uni, but it will take an aggressive and thorough approach to remove enough urchins to restore kelp forests.
Chemical fertilizers are widely used in modern agriculture to boost crop yields. However, these fertilizers are not without risk. In this write-up, we will explore the dangers of chemical fertilizers, including their impact on the environment and human health. We will also examine the alternatives to chemical fertilizers and the role of specific academics in this field. Chemical fertilizers can have a negative impact on the environment, particularly when they are not used in moderation. Excessive use of nitrogen fertilizers can lead to nitrate pollution in waterways, harming aquatic life and posing risks to human health. This pollution can also contribute to algal blooms, which can lead to the formation of dead zones in water bodies. In addition, the production and use of chemical fertilizers can contribute to greenhouse gas emissions, exacerbating climate change. The negative impacts of chemical fertilizers are also beyond human health. Exposure to high levels of fertilizer dust can cause respiratory problems, while exposure to nitrates in drinking water has been linked to an increased risk of certain types of cancer. Pesticides that are often used in conjunction with chemical fertilizers can also pose risks to human health. There are a number of alternatives to chemical fertilizers that can reduce their negative impact. These include organic and natural fertilizers, such as compost and manure, as well as crop rotation and cover crops. In addition, precision agriculture techniques can help farmers apply fertilizers more efficiently and effectively, reducing the risk of pollution. Leading academics in the field of sustainable agriculture have made significant contributions to our understanding of the dangers of chemical fertilizers and the alternatives that exist. For example, Dr. David Montgomery, a geologist at the University of Washington, has written extensively on the impact of industrial agriculture on soil health, and the benefits of regenerative agriculture practices. Similarly, Dr. Rattan Lal, a soil scientist at Ohio State University, has focused on the use of carbon sequestration techniques in agriculture to reduce greenhouse gas emissions. Chemical fertilizers pose a significant risk to the environment and human health, but there are alternatives that can be used to reduce these risks. By exploring the work of leading academics in the field, we can gain a deeper understanding of these issues and work to promote sustainable agriculture practices.
If you love the outdoors, have a passion for science, and want to make a difference in the world, then a career in Agricultural Sciences might be just what you're looking for! Agricultural Sciences is a field that encompasses the study of plants, animals, and the environment, and how they all interact with each other. It's a fascinating area of study that combines biology, chemistry, and engineering to help us better understand the natural world and how we can use it to improve our lives. As an Agricultural Scientist, you could work in a variety of roles, from researching new crop varieties and developing sustainable farming practices, to studying animal behaviour and improving livestock breeding techniques. You might even work in the food industry, helping to develop new products or improve existing ones. Some of the most exciting aspects of this field include the potential to work with cutting-edge technology, such as drones and sensors, to gather data and make informed decisions. You could also have the opportunity to travel the world, working on projects in developing countries and helping to improve food security and sustainability. Typical duties in Agricultural Sciences might include conducting experiments and field trials, analyzing data, writing reports and research papers, and presenting findings to colleagues and stakeholders. You might also work closely with farmers, ranchers, and other agricultural professionals to help them implement new practices and technologies. There are many areas of specialization within Agricultural Sciences, including plant breeding, soil science, animal science, and food science. Other related fields include environmental science, ecology, and biotechnology. To pursue a career in Agricultural Sciences, you'll typically need a Bachelor's degree in a relevant field, such as Agricultural Science, Biology, or Environmental Science. Some popular undergraduate programs and majors include Crop Science, Animal Science, and Food Science. Helpful personal attributes for success in this field include a strong work ethic, attention to detail, good communication skills, and a passion for learning. You should also be comfortable working both independently and as part of a team. Job prospects in Agricultural Sciences are generally good, with a growing demand for professionals who can help address global challenges such as climate change, food security, and sustainable agriculture. Potential employers include government agencies, research institutions, and private companies such as Monsanto, Syngenta, and Cargill. So if you're looking for a rewarding and exciting career that combines science and nature, consider a career in Agricultural Sciences!
Pesticides are ubiquitous in modern agriculture, but their detrimental effects on human health and the environment are becoming increasingly evident. A new approach, called regenerative agriculture, is emerging as a sustainable and healthier alternative. Biological farming practices like those of Tim Parton, a UK farm manager, prioritise soil and environmental health by minimising synthetic inputs, and have led to increased biodiversity and crop yields without the need for harmful chemicals. However, while the environmental and health benefits of regenerative agriculture are clear, the transition away from pesticide-dependent farming remains a challenge for many.
Are you a fan of seafood, but concerned about sustainability? Mock meats have already made their way to the forefront of plant-based cuisine, and now faux seafood is taking center stage. From shrimp to tuna to even sushi, innovative companies are using seaweed, plant protein, and other natural flavors to recreate the taste and texture of seafood without harming the oceans. The Culinary Institute of America has even teamed up with a vegan shrimp startup, New Wave Foods, to perfect the flavor of their shellfish substitute. Whether you're a vegetarian or simply looking to reduce your carbon footprint, these plant-based seafood options are worth a taste test.
Seaweed may be the future of sustainable and nutritious food. As the global population continues to grow and traditional agriculture methods take a toll on the environment, seaweed could be a more efficient and eco-friendly option. Researchers are exploring the potential of seaweed not only as a food source, but also as a tool to combat climate change. Companies like Dutch Weed Burger, AKUA, and Umaro Foods are already developing plant-based alternatives to meat and dairy using seaweed, which is high in nutrients and can be grown without land or fresh water.
Plants have been evolving for millions of years and have developed incredible adaptations to survive in their environments. One of the most impressive adaptations is drought resistance. In this write-up, we will explore the fascinating world of plant evolution and the incredible ways that plants have adapted to survive in dry environments. Did you know that there are plants that can survive without water for years? The cactus is one such plant that has developed unique adaptations to survive in the harsh desert environment. Its thick stems store water, and its shallow roots can quickly absorb moisture when it rains. The cactus also has small leaves that reduce water loss through transpiration and spines that provide shade to the stem, reducing water loss even further. Another interesting example of drought resistance in plants is the succulent. Succulents store water in their leaves, which become plump when water is available and shrink when water is scarce. They also have shallow roots that spread widely to quickly absorb moisture when it rains. Leading academics in the field of plant evolution and drought resistance have made significant contributions to our understanding of these adaptations. For example, Dr. Christine A. Beveridge has studied the molecular mechanisms behind drought resistance in plants and have identified genes that play a crucial role in this process. Her work has led to the development of drought-resistant crops, which have the potential to improve food security in dry regions. In conclusion, the world of plant evolution and drought resistance is full of fascinating facts, stories, and examples. By exploring this topic independently, students can deepen their understanding of the amazing adaptations that plants have developed over millions of years to survive in their environments.
Alaskan fisherman Dune Lankard has witnessed the devastating impacts of natural and man-made disasters on his industry and homeland, from earthquakes to oil spills. Now, he's turning to regenerative ocean farming to mitigate the effects of climate change and create a new regenerative economy based on conservation, restoration, and mitigation. This burgeoning concept, developed by Canadian commercial fisherman turned ocean farmer Bren Smith, involves growing seaweed and shellfish in small underwater gardens, and is touted as the new farming model of the future. Explore the fascinating intersection of traditional fishing practices and sustainable ocean farming in this thought-provoking article.
In "Animal, Vegetable, Miracle," Barbara Kingsolver and her family embark on a year-long journey to live off food from their own neighborhood, shunning the industrial-food pipeline. This memoir-journalistic investigation hybrid will take you on a thought-provoking adventure, revealing the true meaning of "you are what you eat." Kingsolver's enthralling narrative will open your eyes to the importance of locally sourced food, sustainability, and self-sufficiency. Recommended for environmentalists, foodies, sustainability advocates, and anyone interested in the impact of food on our health and the planet. This book will also appeal to those studying agriculture, ecology, and environmental science. Kingsolver's memoir will inspire readers to rethink their food choices and consider the benefits of locally sourced produce. Additionally, this book will be relevant to those interested in self-sufficiency and homesteading.
Are you passionate about the environment and the food we eat? Do you want to make a difference in the world by promoting sustainability and healthy living? Then a career in organic farming might be just what you're looking for! Organic farming is a field that involves growing crops and raising animals without the use of synthetic pesticides, fertilizers, or genetic modification. It's a method of agriculture that prioritizes the health of the soil, the environment, and the people who consume the food. Organic farmers work hard to ensure that their products are healthy, sustainable, and environmentally friendly. As an organic farmer, you'll have the opportunity to work outdoors, get your hands dirty, and make a real impact on the world. You'll be responsible for planting and harvesting crops, caring for animals, and managing the land. You'll also have the chance to experiment with new techniques and methods to improve your yields and protect the environment. There are many different areas of specialization within organic farming, including crop production, animal husbandry, and farm management. You could choose to focus on growing fruits and vegetables, raising livestock, or running a farm business. You could also explore related fields like agronomy, soil science, and sustainable agriculture. To become an organic farmer, you'll need a strong background in agriculture, biology, or environmental science. Many colleges and universities offer undergraduate programs in these fields, including majors like Agriculture, Environmental Studies, and Sustainable Agriculture. You'll also need to gain hands-on experience through internships, apprenticeships, or working on a farm. Helpful personal attributes for a career in organic farming include a love of the outdoors, physical stamina, and a willingness to learn and adapt. You'll need to be able to work independently and as part of a team, and to communicate effectively with customers, suppliers, and other stakeholders. Job prospects in organic farming are strong, with growing demand for organic products around the world. You could work for a small family farm, a large commercial operation, or a government agency focused on sustainable agriculture. Some notable employers in the field include Whole Foods Market, Stonyfield Farm, and the USDA's National Organic Program. So if you're looking for a career that combines your passion for the environment, healthy living, and making a difference in the world, consider a career in organic farming. It's a challenging and rewarding field that offers plenty of opportunities for growth and innovation.
Discover the fascinating history behind the painstaking hand-pollination process of vanilla, the world's second most expensive spice. Learn how the enslaved boy Edmond Albius developed the method that is still in use today and the challenges faced by farmers in cultivating and processing this beloved flavor. Explore how vanilla has become one of the most lucrative spices in existence, with an insatiable demand from consumers worldwide.
Are you passionate about the environment, sustainability, and food production? Do you want to make a real difference in the world? Then studying Agricultural Sciences at university might be the perfect fit for you! Agricultural Sciences is a fascinating field that encompasses a wide range of topics, from plant and animal biology to soil science, economics, and policy. It's a field that is constantly evolving, with new research and innovations being developed all the time to address the challenges facing our planet. One of the most exciting aspects of Agricultural Sciences is the hands-on, real-world experience you'll gain. You'll have the opportunity to work on research projects and internships that will allow you to get your hands dirty and make a real impact. For example, you might work on developing new crop varieties that are more resistant to pests and diseases, or you might help design sustainable farming practices that reduce the environmental impact of agriculture. There are also many inspiring academic figures in this field, such as Norman Borlaug, who is known as the father of the Green Revolution for his work in developing high-yield crops that helped feed millions of people around the world. Other notable figures include Rachel Carson, who is credited with starting the modern environmental movement with her book Silent Spring, and Vandana Shiva, who is a leading voice in the movement for sustainable agriculture and food systems. At the undergraduate level, you'll typically take courses in subjects like plant biology, animal science, agricultural economics, and environmental policy. You'll also have the opportunity to specialize in areas like sustainable agriculture, food science, or agribusiness. And there are many exciting career paths you can pursue with a degree in Agricultural Sciences, from working in research and development for companies like Monsanto or Syngenta, to working for government agencies like the USDA or the EPA, to starting your own sustainable farming business. To succeed in this field, you'll need to be passionate about the environment and sustainability, as well as have a strong background in science and math. You'll also need to be a creative problem-solver, able to think outside the box to come up with innovative solutions to the challenges facing our planet. So if you're ready to make a real difference in the world, consider studying Agricultural Sciences at university. It's a field that is both intellectually stimulating and deeply rewarding, and it offers endless opportunities to make a positive impact on our planet and its people.
Did you know that seaweed could be the answer to global food insecurity and reducing greenhouse gas emissions? Seaweed is not only a dietary staple and carbon soaker, but also holds potential for replacing plastics, animal feed, and biofuels. Researchers from the University of Queensland have mapped out the potential of farming more commercially important seaweed species and estimated that expanding seaweed farming could reduce global agricultural greenhouse gas emissions by up to 2.6 billion tonnes of CO2-equivalent per year. However, careful management is needed to avoid potential ecological impacts.
Transform farmland into thriving habitats for nature while hitting UK's climate and biodiversity targets at half the cost? Yes, it's possible! A new study by leading universities shows incentivizing farmers to spare land for habitats is a cost-effective solution.
Soybeans have been used for centuries in Asian cuisine, but American industrialist Henry Ford took soy to the next level in the 1930s. Soy's versatility and ability to grow easily and cheaply in variable conditions make it a staple in many foods, from mayonnaise to biodegradable plastic. Soy proteins and fats have been used to make spongy foods like tofu and to help make processed foods. Soybeans are also a great source of essential amino acids and "good" fats, which can decrease cholesterol and reduce the risk of heart disease. However, the widespread use of soy has led to deforestation and the displacement of farmers and indigenous communities. Learning about the benefits and challenges of soy can help students become more aware consumers and understand the importance of finding ways to use soy humanely and sustainably.
Did you know that converting agricultural food waste could provide three times the amount of protein needed to feed every person in the world, every day? A recent paper published in Green Chemistry by researchers from King's College London highlights the potential of waste-to-protein technologies to address global malnutrition, reduce pressure on food supply chains, and fight climate change. By utilizing innovative methods such as fermentation and insect farming, we could produce 197g of protein per person in a day, all while reducing food waste.
In "The Soil Will Save Us," Kristin Ohlson argues that the solution to climate change may lie beneath our feet. Thousands of years of poor farming practices and modern agriculture have stripped the world's soils of up to 80% of their carbon, contributing to atmospheric warming. But by adopting ecological approaches that prioritize the health of soil and its microorganisms, we can turn atmospheric carbon into beneficial soil carbon and potentially reverse global warming. Ohlson introduces readers to the visionaries who are figuring out how to build healthy soil and solve problems like drought, erosion, pollution, and food quality. Recommended for environmentalists, farmers, scientists, and anyone interested in sustainable agriculture and combating climate change. Kristin Ohlson's "The Soil Will Save Us" challenges conventional thinking about farming practices and offers a hopeful solution to the climate crisis. The book has particular relevance to those studying ecology, environmental science, and agriculture, as well as those working in fields related to food and sustainability. It highlights the importance of healthy soil and its role in mitigating the effects of climate change, making it a must-read for anyone interested in creating a more sustainable future.
Activities
People and Organizations