Article
More like this
If you love the outdoors, have a passion for science, and want to make a difference in the world, then a career in Agricultural Sciences might be just what you're looking for! Agricultural Sciences is a field that encompasses the study of plants, animals, and the environment, and how they all interact with each other. It's a fascinating area of study that combines biology, chemistry, and engineering to help us better understand the natural world and how we can use it to improve our lives. As an Agricultural Scientist, you could work in a variety of roles, from researching new crop varieties and developing sustainable farming practices, to studying animal behaviour and improving livestock breeding techniques. You might even work in the food industry, helping to develop new products or improve existing ones. Some of the most exciting aspects of this field include the potential to work with cutting-edge technology, such as drones and sensors, to gather data and make informed decisions. You could also have the opportunity to travel the world, working on projects in developing countries and helping to improve food security and sustainability. Typical duties in Agricultural Sciences might include conducting experiments and field trials, analyzing data, writing reports and research papers, and presenting findings to colleagues and stakeholders. You might also work closely with farmers, ranchers, and other agricultural professionals to help them implement new practices and technologies. There are many areas of specialization within Agricultural Sciences, including plant breeding, soil science, animal science, and food science. Other related fields include environmental science, ecology, and biotechnology. To pursue a career in Agricultural Sciences, you'll typically need a Bachelor's degree in a relevant field, such as Agricultural Science, Biology, or Environmental Science. Some popular undergraduate programs and majors include Crop Science, Animal Science, and Food Science. Helpful personal attributes for success in this field include a strong work ethic, attention to detail, good communication skills, and a passion for learning. You should also be comfortable working both independently and as part of a team. Job prospects in Agricultural Sciences are generally good, with a growing demand for professionals who can help address global challenges such as climate change, food security, and sustainable agriculture. Potential employers include government agencies, research institutions, and private companies such as Monsanto, Syngenta, and Cargill. So if you're looking for a rewarding and exciting career that combines science and nature, consider a career in Agricultural Sciences!
The invasion of purple sea urchins has devastated kelp forests along the coasts of California, Japan, Norway, Canada, and Tasmania, leaving behind barren underwater landscapes that can last for decades. However, a Norwegian company called Urchinomics has a plan to restore kelp forests and create a new fishery for overpopulated urchins through "urchin ranching." Urchin ranching could potentially create a local speciality dining market for purple urchin uni, but it will take an aggressive and thorough approach to remove enough urchins to restore kelp forests.
Are you interested in the science behind our food and the environment? Do you want to make a difference in the world by creating sustainable agricultural practices? If so, a career in Agricultural Sciences might be the perfect fit for you! Agricultural Sciences is a broad field that encompasses everything from plant and animal sciences to soil science and agricultural economics. It is a field that is constantly evolving, with new technologies and techniques being developed to improve crop yields and reduce environmental impact. As an Agricultural Scientist, you could be involved in a variety of tasks, including conducting research on crop genetics, developing new farming techniques, or working on policy development to improve agricultural practices. You could specialize in areas such as animal husbandry, crop management, or soil science, among others. To pursue a career in Agricultural Sciences, you will typically need a bachelor's degree in a related field such as Agricultural Science, Environmental Science, or Biology. Some popular undergraduate programs and majors include Agronomy, Horticulture, and Agricultural Engineering. In addition to a strong academic background, there are certain personal attributes that can be helpful in this field. These include a passion for the environment, strong problem-solving skills, and excellent communication skills. The job prospects for Agricultural Scientists are promising, with a growing demand for professionals in this field. You could work for a variety of employers, including government agencies, universities, or private companies. Some notable employers include the United States Department of Agriculture (USDA), Monsanto, and the World Bank. A career in Agricultural Sciences can be both rewarding and fulfilling, allowing you to make a positive impact on the world around you. So why not explore this exciting field further and see where it could take you?
The way we source our food has a significant impact on both the environment and the economy. Sustainable food sourcing is a system that ensures the availability of food and its accessibility while taking into account the ecological, economic, and social impacts of the entire supply chain. It aims to reduce the negative environmental and economic effects of food production, distribution, and waste, while promoting the health and well-being of individuals and communities. According to the United Nations, food systems account for over a-third of global greenhouse gas emissions. Unsustainable food production and consumption practices, such as excessive use of chemical fertilizers, deforestation, and food waste, exacerbate climate change, soil degradation, and biodiversity loss. Sustainable food sourcing, on the other hand, can help mitigate these negative impacts by promoting regenerative agriculture, reducing food waste, and supporting local food systems. In addition to its environmental benefits, sustainable food sourcing can also generate economic benefits. Sustainable agriculture practices can enhance the productivity and quality of food, reduce production costs, and increase the resilience of farmers to external shocks, such as weather changes and market fluctuations. Furthermore, supporting local food systems can create jobs and boost the local economy. Leading academics in the field, such as Dr. Polly Ericksen from the University of Vermont and Dr. Emile Frison from the International Panel of Experts on Sustainable Food Systems, emphasize the importance of adopting a holistic and integrated approach to sustainable food sourcing. This approach should consider the social, economic, and ecological dimensions of food systems and involve all actors along the supply chain, from producers to consumers. By independently exploring these and other related academic topics, students can deepen their understanding of the complex challenges and opportunities of sustainable food sourcing, and contribute to building a more equitable and sustainable future.
Have you ever heard of growing plants without soil? It's possible with hydroponics and aquaponics! These innovative methods of agriculture have gained popularity in recent years for their ability to produce high yields of fresh produce while using less space, water, and pesticides than traditional farming. In this write-up, we'll explore the fascinating world of hydroponics and aquaponics, diving into the concepts, benefits, and contributions from leading academics in the field. Hydroponics is the practice of growing plants in nutrient-rich water instead of soil. This method can be done in a variety of ways, from a simple jar with water and plant roots to complex systems using pumps, pipes, and controlled environments. Aquaponics takes it a step further by combining hydroponics with fish farming. In this closed-loop system, fish waste provides nutrients for plants, while plants naturally filter and clean the water for the fish. Did you know that hydroponics and aquaponics can yield up to 10 times more produce than traditional farming methods? This is because the plants receive precisely the nutrients they need, and water is recycled efficiently. Additionally, these methods can be done year-round, in any climate, and with less land space. It's no wonder that hydroponics and aquaponics are gaining attention from both commercial farmers and hobbyists alike. One leading academic in this field is Dr. Dickson Despommier, a professor at Columbia University. He's written extensively on vertical farming, an innovative form of agriculture that takes hydroponics to new heights by stacking layers of plants vertically. Another notable academic is Dr. Rakocy from the University of the Virgin Islands, who pioneered the development of modern aquaponics in the 1980s. In conclusion, hydroponics and aquaponics offer an innovative and sustainable solution to traditional farming methods. With its ability to produce more fresh produce with less resources, it's no wonder why this field is gaining traction. By exploring this topic further, you can discover new and exciting ways to apply academic concepts to real-world problems.
Pesticides are ubiquitous in modern agriculture, but their detrimental effects on human health and the environment are becoming increasingly evident. A new approach, called regenerative agriculture, is emerging as a sustainable and healthier alternative. Biological farming practices like those of Tim Parton, a UK farm manager, prioritise soil and environmental health by minimising synthetic inputs, and have led to increased biodiversity and crop yields without the need for harmful chemicals. However, while the environmental and health benefits of regenerative agriculture are clear, the transition away from pesticide-dependent farming remains a challenge for many.
Transform farmland into thriving habitats for nature while hitting UK's climate and biodiversity targets at half the cost? Yes, it's possible! A new study by leading universities shows incentivizing farmers to spare land for habitats is a cost-effective solution.
Did you know that approximately 40% of the global fish catch is discarded as bycatch, unintentionally caught fish that are not the target of the fishing operation? This means that a significant amount of fish, which could be used for food and other purposes, is being wasted. Fortunately, researchers and industry leaders are coming up with innovative solutions to turn bycatch into valuable resources. Bycatch can be transformed into fish meal, used as fertilizer, or even turned into high-end seafood products. One of the leading experts in this field is Dr. Daniel Pauly, a fisheries scientist and professor at the University of British Columbia. Dr. Pauly is known for his work on developing methods to estimate global fish catches, and he has also been a vocal advocate for reducing bycatch and promoting sustainable fishing practices. Another academic making significant contributions in this area is Dr. Karin Limburg, a fisheries biologist and professor at the SUNY College of Environmental Science and Forestry. Dr. Limburg has researched the use of bycatch for fertilizer and has found that it can be a valuable source of nutrients for crops. In addition to these experts, industry leaders such as FishWise, a nonprofit seafood sustainability consultancy, are also working to reduce bycatch and promote sustainable fishing practices. They work with major seafood retailers and distributors to improve the sustainability of the seafood supply chain. By exploring this topic further, you can develop a deeper understanding of the complex issues facing our oceans and contribute to finding innovative solutions for a more sustainable future.
Are you passionate about the environment and the food we eat? Do you want to make a difference in the world by promoting sustainability and healthy living? Then a career in organic farming might be just what you're looking for! Organic farming is a field that involves growing crops and raising animals without the use of synthetic pesticides, fertilizers, or genetic modification. It's a method of agriculture that prioritizes the health of the soil, the environment, and the people who consume the food. Organic farmers work hard to ensure that their products are healthy, sustainable, and environmentally friendly. As an organic farmer, you'll have the opportunity to work outdoors, get your hands dirty, and make a real impact on the world. You'll be responsible for planting and harvesting crops, caring for animals, and managing the land. You'll also have the chance to experiment with new techniques and methods to improve your yields and protect the environment. There are many different areas of specialization within organic farming, including crop production, animal husbandry, and farm management. You could choose to focus on growing fruits and vegetables, raising livestock, or running a farm business. You could also explore related fields like agronomy, soil science, and sustainable agriculture. To become an organic farmer, you'll need a strong background in agriculture, biology, or environmental science. Many colleges and universities offer undergraduate programs in these fields, including majors like Agriculture, Environmental Studies, and Sustainable Agriculture. You'll also need to gain hands-on experience through internships, apprenticeships, or working on a farm. Helpful personal attributes for a career in organic farming include a love of the outdoors, physical stamina, and a willingness to learn and adapt. You'll need to be able to work independently and as part of a team, and to communicate effectively with customers, suppliers, and other stakeholders. Job prospects in organic farming are strong, with growing demand for organic products around the world. You could work for a small family farm, a large commercial operation, or a government agency focused on sustainable agriculture. Some notable employers in the field include Whole Foods Market, Stonyfield Farm, and the USDA's National Organic Program. So if you're looking for a career that combines your passion for the environment, healthy living, and making a difference in the world, consider a career in organic farming. It's a challenging and rewarding field that offers plenty of opportunities for growth and innovation.
Do you know where your food comes from? In 'The Omnivore's Dilemma: A Natural History of Four Meals', Michael Pollan takes you on a journey from the industrial food complex to foraging in the wild, revealing the hidden costs of our modern food systems. As you follow each food chain, you'll learn how our eating choices impact not only our own health but also the health of the environment. Pollan's insightful exploration of our relationship with food will make you question everything you thought you knew about what's on your plate. Recommended for anyone interested in food systems, environmental sustainability, health, and ethics. This book is relevant to students interested in fields such as agriculture, biology, nutrition, environmental studies, and ethics. It is also relevant to anyone who cares about the impact of their food choices on their health and the health of the planet. The book challenges readers to think critically about the industrial food complex and consider alternative ways of producing and consuming food that prioritize sustainability and ethical considerations.
Discover the fascinating history behind the painstaking hand-pollination process of vanilla, the world's second most expensive spice. Learn how the enslaved boy Edmond Albius developed the method that is still in use today and the challenges faced by farmers in cultivating and processing this beloved flavor. Explore how vanilla has become one of the most lucrative spices in existence, with an insatiable demand from consumers worldwide.
Billions of animals are raised and slaughtered in factory farms every year, in conditions likely to cause extreme suffering. Many experts believe animals have conscious experiences and can experience pain. We tend to value the suffering of humans more than animals, which could be a form of "speciesism". There are things we can do to help solve this problem, including persuading people to change their diets, lobbying for better welfare standards for animals, and developing alternatives to animal products. Cost-effectiveness analyses suggest there are opportunities to have large-scale positive impacts on animal welfare, with corporate campaigns seeming particularly promising.
Alaskan fisherman Dune Lankard has witnessed the devastating impacts of natural and man-made disasters on his industry and homeland, from earthquakes to oil spills. Now, he's turning to regenerative ocean farming to mitigate the effects of climate change and create a new regenerative economy based on conservation, restoration, and mitigation. This burgeoning concept, developed by Canadian commercial fisherman turned ocean farmer Bren Smith, involves growing seaweed and shellfish in small underwater gardens, and is touted as the new farming model of the future. Explore the fascinating intersection of traditional fishing practices and sustainable ocean farming in this thought-provoking article.
Chemical fertilizers are widely used in modern agriculture to boost crop yields. However, these fertilizers are not without risk. In this write-up, we will explore the dangers of chemical fertilizers, including their impact on the environment and human health. We will also examine the alternatives to chemical fertilizers and the role of specific academics in this field. Chemical fertilizers can have a negative impact on the environment, particularly when they are not used in moderation. Excessive use of nitrogen fertilizers can lead to nitrate pollution in waterways, harming aquatic life and posing risks to human health. This pollution can also contribute to algal blooms, which can lead to the formation of dead zones in water bodies. In addition, the production and use of chemical fertilizers can contribute to greenhouse gas emissions, exacerbating climate change. The negative impacts of chemical fertilizers are also beyond human health. Exposure to high levels of fertilizer dust can cause respiratory problems, while exposure to nitrates in drinking water has been linked to an increased risk of certain types of cancer. Pesticides that are often used in conjunction with chemical fertilizers can also pose risks to human health. There are a number of alternatives to chemical fertilizers that can reduce their negative impact. These include organic and natural fertilizers, such as compost and manure, as well as crop rotation and cover crops. In addition, precision agriculture techniques can help farmers apply fertilizers more efficiently and effectively, reducing the risk of pollution. Leading academics in the field of sustainable agriculture have made significant contributions to our understanding of the dangers of chemical fertilizers and the alternatives that exist. For example, Dr. David Montgomery, a geologist at the University of Washington, has written extensively on the impact of industrial agriculture on soil health, and the benefits of regenerative agriculture practices. Similarly, Dr. Rattan Lal, a soil scientist at Ohio State University, has focused on the use of carbon sequestration techniques in agriculture to reduce greenhouse gas emissions. Chemical fertilizers pose a significant risk to the environment and human health, but there are alternatives that can be used to reduce these risks. By exploring the work of leading academics in the field, we can gain a deeper understanding of these issues and work to promote sustainable agriculture practices.
Discover the fascinating world of seeds with this award-winning book that takes you on a journey through their natural and human history. From the nutmeg and pepper that drove the Age of Discovery to the coffee beans that fueled the Enlightenment, seeds have played a crucial role in shaping diets, economies, and civilizations around the globe. Through the eyes of a field biologist and the charm of a fireside storyteller, explore the beauty, wonder, and evolutionary marvels of seeds that are often overlooked. Essential reading for anyone who loves to see a plant grow. Recommended for botanists, environmentalists, farmers, historians, and anyone curious about the natural world, this book offers a unique perspective on the often-overlooked importance of seeds. It delves into the historical, cultural, and economic significance of seeds, showing how they have shaped human societies and impacted global events. The book also offers a scientific exploration of the biology and ecology of seeds, making it relevant to students and professionals in fields such as botany, biology, and agriculture. Overall, this book offers a captivating and informative read for anyone interested in the wonders of the natural world.
Soybeans have been used for centuries in Asian cuisine, but American industrialist Henry Ford took soy to the next level in the 1930s. Soy's versatility and ability to grow easily and cheaply in variable conditions make it a staple in many foods, from mayonnaise to biodegradable plastic. Soy proteins and fats have been used to make spongy foods like tofu and to help make processed foods. Soybeans are also a great source of essential amino acids and "good" fats, which can decrease cholesterol and reduce the risk of heart disease. However, the widespread use of soy has led to deforestation and the displacement of farmers and indigenous communities. Learning about the benefits and challenges of soy can help students become more aware consumers and understand the importance of finding ways to use soy humanely and sustainably.
The making of chocolate is a primitive and unpredictable process involving wild rainforest insects, fungi, and microbes. Discover how the microbiome of cacao trees, tiny midges, and fermentation contribute to the $110-billion chocolate industry. Learn how researchers are working to standardize cacao-making and develop cacao-fermentation "starters."
Plants have been evolving for millions of years and have developed incredible adaptations to survive in their environments. One of the most impressive adaptations is drought resistance. In this write-up, we will explore the fascinating world of plant evolution and the incredible ways that plants have adapted to survive in dry environments. Did you know that there are plants that can survive without water for years? The cactus is one such plant that has developed unique adaptations to survive in the harsh desert environment. Its thick stems store water, and its shallow roots can quickly absorb moisture when it rains. The cactus also has small leaves that reduce water loss through transpiration and spines that provide shade to the stem, reducing water loss even further. Another interesting example of drought resistance in plants is the succulent. Succulents store water in their leaves, which become plump when water is available and shrink when water is scarce. They also have shallow roots that spread widely to quickly absorb moisture when it rains. Leading academics in the field of plant evolution and drought resistance have made significant contributions to our understanding of these adaptations. For example, Dr. Christine A. Beveridge has studied the molecular mechanisms behind drought resistance in plants and have identified genes that play a crucial role in this process. Her work has led to the development of drought-resistant crops, which have the potential to improve food security in dry regions. In conclusion, the world of plant evolution and drought resistance is full of fascinating facts, stories, and examples. By exploring this topic independently, students can deepen their understanding of the amazing adaptations that plants have developed over millions of years to survive in their environments.
In just 70 years, the UK's landscape has undergone drastic changes, with non-native species thriving and native plants dwindling due to modern agriculture and climate change. The Plant Atlas 2020, produced by the Botanical Society of Britain and Ireland, reveals the catastrophic loss of grasslands, heathlands, and other habitats that would shock those brought up in the 1950s. The survey also highlights the impact of climate change on plant life and calls for stronger laws and sustainable land management to protect flora. Sir David Attenborough presents a new BBC documentary, Wild Isles, on the subject.
Pollinators, such as bees and butterflies, are essential to our planet's biodiversity. They facilitate the reproduction of flowering plants, which in turn support other wildlife and contribute to the overall health of ecosystems. Sadly, pollinators face numerous threats, including habitat loss, pesticides, and climate change. In this write-up, we'll explore the vital role of pollinators in biodiversity conservation, as well as the challenges they face. First, let's define biodiversity. It refers to the variety of life on Earth, including different species, ecosystems, and genetic diversity within species. Pollinators play a crucial role in maintaining this diversity by helping plants reproduce. Over 75% of the world's food crops depend on pollinators, and they also support the growth of wildflowers and other plants that provide habitat for other animals. But pollinators are in trouble. According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), over 16% of vertebrate pollinators, such as birds and bats, are threatened with extinction. In addition, around 40% of invertebrate pollinator species, such as bees and butterflies, are facing the same fate. One leading academic in this field is Dr. Dave Goulson, a professor of biology at the University of Sussex. He has conducted extensive research on the importance of pollinators and the threats they face. In his book, "The Garden Jungle," he emphasizes the role of urban gardens in supporting pollinators and other wildlife. Another academic, Dr. Rachael Winfree from Rutgers University, has studied the impact of habitat fragmentation on pollinator communities. Her research shows that smaller patches of habitat can still support pollinators, but it's crucial to have a diversity of plants and habitats available. So, what can we do to help pollinators? There are many actions we can take, from planting pollinator-friendly gardens to reducing pesticide use. We can also support organizations that work to protect pollinators, such as the Xerces Society and the Pollinator Partnership. In conclusion, pollinators play a vital role in maintaining biodiversity, but they face numerous threats. By learning more about pollinators and taking action to protect them, we can help to ensure a healthy and diverse planet for future generations.
Activities