Article
More like this
What if you could grow your own fruit at home, filling the same space as a Nespresso machine, but with fresh berry cells that are impossible to cultivate using traditional means? That’s the question that Lauri Reuter and his colleagues at VTT Technical Research Centre of Finland are exploring with their innovative project: a "home bioreactor" that produces plant cell cultures that can be eaten in a delicious form. With the potential to grow highly nutritious plants that are currently impossible to cultivate for food, this project could expand the human diet and help promote good conservation practices.
When it comes to seaweed, most people think of sushi. However, seaweed has been consumed by coastal communities for thousands of years and is a staple in many cultures worldwide. Apart from its taste, seaweed is also loaded with nutrients such as iodine, calcium, and iron. In recent years, seaweed has gained popularity in the food industry due to its versatility and sustainability. From sushi to smoothies, here's a closer look at the versatility of seaweed in the kitchen. Seaweed is a type of marine algae that comes in different shapes, sizes, and colors. There are three main types of seaweed: brown, red, and green. Each type has its unique flavor and texture. For example, nori, which is commonly used in sushi, is a type of red seaweed that has a slightly sweet and nutty flavor. Kelp, which is a type of brown seaweed, has a crunchy texture and a mild flavor that pairs well with seafood. Apart from its taste, seaweed has several health benefits. For instance, seaweed is low in calories and high in fiber, making it an excellent addition to any diet. It's also rich in vitamins and minerals such as calcium, iodine, and iron, which are essential for healthy bones, thyroid function, and red blood cell production. Moreover, some studies suggest that seaweed may have anti-inflammatory and anti-cancer properties. In addition to its nutritional benefits, seaweed is also a sustainable food source. Unlike land-based crops, seaweed doesn't require any fertilizers, pesticides, or freshwater to grow. Seaweed also absorbs carbon dioxide from the atmosphere, which helps to mitigate climate change. Moreover, seaweed can be farmed in the ocean without taking up valuable land resources, making it an excellent alternative to traditional agriculture. Leading academics in the field of seaweed research include Dr. Craig Rose from the University of Copenhagen, who has conducted extensive research on the nutritional benefits of seaweed, and Dr. Charles Yarish from the University of Connecticut, who is a pioneer in seaweed aquaculture and has developed sustainable farming methods for seaweed. Seaweed is a fascinating and versatile ingredient that has a lot to offer in terms of taste, nutrition, and sustainability. Whether you're a sushi lover or a smoothie enthusiast, there's a seaweed dish out there for everyone. So why not give it a try?
Have you ever considered how the loss of agrobiodiversity affects our food and agriculture? Discover how the standard American diet has evolved in the last 45 years and how our love of cheese has contributed to a whopping 20 additional pounds in total fat we eat each year. Learn about the reduction of diversity in our food supply and how it affects our ability to feed ourselves. Explore the global standard diet and the impact of standardization on our food and taste.
Do you know where your food comes from? In 'The Omnivore's Dilemma: A Natural History of Four Meals', Michael Pollan takes you on a journey from the industrial food complex to foraging in the wild, revealing the hidden costs of our modern food systems. As you follow each food chain, you'll learn how our eating choices impact not only our own health but also the health of the environment. Pollan's insightful exploration of our relationship with food will make you question everything you thought you knew about what's on your plate. Recommended for anyone interested in food systems, environmental sustainability, health, and ethics. This book is relevant to students interested in fields such as agriculture, biology, nutrition, environmental studies, and ethics. It is also relevant to anyone who cares about the impact of their food choices on their health and the health of the planet. The book challenges readers to think critically about the industrial food complex and consider alternative ways of producing and consuming food that prioritize sustainability and ethical considerations.
In today's world, it's easy to take for granted the food we eat and where it comes from. However, understanding the complex supply chain behind the fruits and vegetables we purchase can have significant intellectual and practical benefits. In times of crisis, like during the COVID-19 pandemic, supply chains are stretched thin, and it becomes more important than ever to explore alternative ways of growing food. Enter high-tech urban agriculture, a revolutionary concept that could transform the way we produce and consume food. With vertical farms popping up in cities worldwide, growing crops closer to where they are eaten is becoming a reality. These systems provide numerous benefits, from being healthier and more sustainable to containing no pesticides. By exploring these cutting-edge concepts further, students can gain knowledge about sustainable practices, future technologies, and global supply chains.
As a student, you might have heard about the importance of reducing your carbon footprint to help combat climate change. One way to do this is by cutting down on the amount of meat you eat. Did you know that approximately 15% of all greenhouse gas emissions from humans come from livestock production? By reducing our meat consumption, we could significantly reduce these emissions. Not only that, meat and dairy production take up a lot of land, around 80% of all farmland! However, not all meat is created equal. Large-scale farming of beef has a particularly high impact, whereas small-scale farming of animals can have a lower environmental footprint. Vegan alternatives can also come with their own set of problems, but a plant-based diet can bring several positive health benefits. By changing how we look at food and eat it sustainably, we could potentially change the world.
Are avocados the sign of the apocalypse? Not quite, but our obsession with this buttery fruit has led to record prices, financial struggles for millennials, and even avocado-related crime. While Americans devour 7 pounds of avocados per person each year, nearly all of these avocados are of a single variety: the ubiquitous Hass. But how did the pebbly, black-skinned Hass come to dominate groves and dinner tables around the world when people have cultivated avocados for thousands of years and come up with more than 400 different varieties? The answer lies in a delicious mistake that changed the course of avocado history.
Discover the fascinating history behind the painstaking hand-pollination process of vanilla, the world's second most expensive spice. Learn how the enslaved boy Edmond Albius developed the method that is still in use today and the challenges faced by farmers in cultivating and processing this beloved flavor. Explore how vanilla has become one of the most lucrative spices in existence, with an insatiable demand from consumers worldwide.
Food is energy for the body, and the average number of calories in fat, protein, and carbohydrates is still used as an important marker for nutrition today. However, biologist Rob Dunn explains that there is no such thing as an average food or person. How many calories we extract from food depends on the biology of the species we are eating, how we cook and process our food, and even on the different bacterial communities in different people's guts. Standard calorie counts don't take any of these factors into consideration, resulting in numbers that are slightly inaccurate, at best, and sometimes rather misleading. Digestion turns out to be such a messy affair that we'll probably never have precise calorie counts for all the different foods we'd like to eat and prepare in so many different ways. However, learning about the biology of food and digestion can help us make better choices and understand our bodies better.
Seaweed may be the future of sustainable and nutritious food. As the global population continues to grow and traditional agriculture methods take a toll on the environment, seaweed could be a more efficient and eco-friendly option. Researchers are exploring the potential of seaweed not only as a food source, but also as a tool to combat climate change. Companies like Dutch Weed Burger, AKUA, and Umaro Foods are already developing plant-based alternatives to meat and dairy using seaweed, which is high in nutrients and can be grown without land or fresh water.
Are you a fan of seafood, but concerned about sustainability? Mock meats have already made their way to the forefront of plant-based cuisine, and now faux seafood is taking center stage. From shrimp to tuna to even sushi, innovative companies are using seaweed, plant protein, and other natural flavors to recreate the taste and texture of seafood without harming the oceans. The Culinary Institute of America has even teamed up with a vegan shrimp startup, New Wave Foods, to perfect the flavor of their shellfish substitute. Whether you're a vegetarian or simply looking to reduce your carbon footprint, these plant-based seafood options are worth a taste test.
Pesticides are ubiquitous in modern agriculture, but their detrimental effects on human health and the environment are becoming increasingly evident. A new approach, called regenerative agriculture, is emerging as a sustainable and healthier alternative. Biological farming practices like those of Tim Parton, a UK farm manager, prioritise soil and environmental health by minimising synthetic inputs, and have led to increased biodiversity and crop yields without the need for harmful chemicals. However, while the environmental and health benefits of regenerative agriculture are clear, the transition away from pesticide-dependent farming remains a challenge for many.
Policymakers can improve national food systems' performance and sustainability by utilizing aquatic foods, or 'blue' foods, to tackle nutrient deficiencies, cardiovascular disease and environmental footprints. The Blue Food Assessment, led by Stanford University, Stockholm Resilience Centre, and EAT, compiles and analyzes national data to uncover the four key roles blue foods can play. The research indicates that farmed bivalves or small pelagic fish, such as sardines and herrings, can benefit less affluent populations while having low environmental footprints. The Assessment provides policymakers with an interactive tool to explore blue food policies relevant to their national settings.
Genetic modification is a fascinating and controversial topic that has been around for thousands of years. People have been selectively breeding plants and animals to create desirable traits, such as the transformation of the tropical grass Teosinte into the delicious corn we eat today. However, modern technology has allowed scientists to manipulate DNA with speed and precision, creating genetically modified foods that can resist pests or produce antifreeze proteins from fish. While some people are concerned about the safety of these foods, they have all been thoroughly tested. Learning about genetic modification can help us understand the science behind our food and the potential benefits and risks associated with it. It's an exciting area of study that can inspire us to think critically about the world around us and the impact of technology on our lives.
Soybeans have been used for centuries in Asian cuisine, but American industrialist Henry Ford took soy to the next level in the 1930s. Soy's versatility and ability to grow easily and cheaply in variable conditions make it a staple in many foods, from mayonnaise to biodegradable plastic. Soy proteins and fats have been used to make spongy foods like tofu and to help make processed foods. Soybeans are also a great source of essential amino acids and "good" fats, which can decrease cholesterol and reduce the risk of heart disease. However, the widespread use of soy has led to deforestation and the displacement of farmers and indigenous communities. Learning about the benefits and challenges of soy can help students become more aware consumers and understand the importance of finding ways to use soy humanely and sustainably.
Veganism is more than just a trend; it's a lifestyle choice that has a positive impact on our health and the planet. By adopting a vegan diet, you can reduce your carbon footprint and help conserve the environment. Veganism is not only about the food we eat, but also about being compassionate to animals. However, it's important to consider the limitations of a vegan diet, including the potential hidden costs socially, economically, and environmentally. Nonetheless, learning about the benefits and limitations of veganism can help you make informed choices that align with your values and help you contribute to a more sustainable world.
Pesticides not targeted at flowers may pose a hidden threat to pollinators, according to new research from Trinity and DCU. The study, the first of its kind in Ireland, found residues of several pesticides in the nectar and pollen of both crop and wild plants, with some chemicals lingering for years after application. The findings have implications for the health of bees and other pollinators, as well as for ecosystem function, crop production, and human health.
Billions of animals are raised and slaughtered in factory farms every year, in conditions likely to cause extreme suffering. Many experts believe animals have conscious experiences and can experience pain. We tend to value the suffering of humans more than animals, which could be a form of "speciesism". There are things we can do to help solve this problem, including persuading people to change their diets, lobbying for better welfare standards for animals, and developing alternatives to animal products. Cost-effectiveness analyses suggest there are opportunities to have large-scale positive impacts on animal welfare, with corporate campaigns seeming particularly promising.
The invasion of purple sea urchins has devastated kelp forests along the coasts of California, Japan, Norway, Canada, and Tasmania, leaving behind barren underwater landscapes that can last for decades. However, a Norwegian company called Urchinomics has a plan to restore kelp forests and create a new fishery for overpopulated urchins through "urchin ranching." Urchin ranching could potentially create a local speciality dining market for purple urchin uni, but it will take an aggressive and thorough approach to remove enough urchins to restore kelp forests.
Did you know that approximately 40% of the global fish catch is discarded as bycatch, unintentionally caught fish that are not the target of the fishing operation? This means that a significant amount of fish, which could be used for food and other purposes, is being wasted. Fortunately, researchers and industry leaders are coming up with innovative solutions to turn bycatch into valuable resources. Bycatch can be transformed into fish meal, used as fertilizer, or even turned into high-end seafood products. One of the leading experts in this field is Dr. Daniel Pauly, a fisheries scientist and professor at the University of British Columbia. Dr. Pauly is known for his work on developing methods to estimate global fish catches, and he has also been a vocal advocate for reducing bycatch and promoting sustainable fishing practices. Another academic making significant contributions in this area is Dr. Karin Limburg, a fisheries biologist and professor at the SUNY College of Environmental Science and Forestry. Dr. Limburg has researched the use of bycatch for fertilizer and has found that it can be a valuable source of nutrients for crops. In addition to these experts, industry leaders such as FishWise, a nonprofit seafood sustainability consultancy, are also working to reduce bycatch and promote sustainable fishing practices. They work with major seafood retailers and distributors to improve the sustainability of the seafood supply chain. By exploring this topic further, you can develop a deeper understanding of the complex issues facing our oceans and contribute to finding innovative solutions for a more sustainable future.
Activities
Academic Extensions
Thought Experiments