Article
More like this
Stanford University researchers, in collaboration with other institutions, have developed a molecule that prevents the spike protein of the SARS-CoV-2 virus from twisting and infecting cells, including those with new variants. This new type of antiviral therapeutic, called the longHR2\_42 inhibitor, may be delivered via inhaler to treat early infections and prevent severe illness. The team's detailed understanding of the twisted structure of the virus's spike protein allowed them to create a longer molecule that is more effective than previous attempts to block the virus. Their groundbreaking research may lead to a promising solution to combat COVID-19.
The story of Dr. William Halsted and Caroline Hampton highlights the importance of problem-solving and innovation in academia. When Hampton developed a severe reaction to the disinfectants used before surgery, Halsted didn't just accept the status quo. Instead, he used his knowledge and connections to create a solution - thin rubber gloves. This moment of vision not only saved Hampton's hands but also led to the creation of a multibillion-dollar industry. Learning about problem-solving and innovation in academia can benefit students both intellectually and practically. By developing these skills, students can become better equipped to tackle real-world problems and create solutions that can make a difference.
Do you have a passion for helping others and a fascination with the human eye? If so, a career in optometry could be the perfect fit for you! Optometrists are healthcare professionals who specialize in diagnosing and treating vision problems and eye diseases. They play a vital role in helping people maintain healthy eyes and clear vision. As an optometrist, you'll have the opportunity to work with patients of all ages, from children to seniors. You'll use state-of-the-art technology to examine patients' eyes and diagnose problems such as nearsightedness, farsightedness, and astigmatism. You'll also be able to detect and treat eye diseases such as glaucoma, cataracts, and macular degeneration. One of the most appealing aspects of a career in optometry is the ability to make a real difference in people's lives. Imagine helping a child see clearly for the first time or saving someone's vision by detecting a serious eye disease early on. Optometrists have the power to improve their patients' quality of life in meaningful ways. In addition to traditional optometry, there are many areas of specialization within the field. Some optometrists choose to focus on pediatric optometry, working with children to ensure they have healthy eyes and clear vision. Others specialize in contact lenses, helping patients find the perfect lenses to fit their unique needs. And still others focus on low vision, working with patients who have severe visual impairments to help them navigate the world around them. To become an optometrist, you'll need to complete a Doctor of Optometry (OD) degree from an accredited optometry school. Popular undergraduate majors for aspiring optometrists include biology, chemistry, and physics. In addition to completing a rigorous academic program, you'll also need to pass a national board exam to become licensed to practice. Helpful personal attributes for a career in optometry include strong communication skills, attention to detail, and a passion for helping others. You'll also need to be comfortable using technology and working with a wide range of patients. Job prospects for optometrists are strong, with a projected growth rate of 10% over the next decade. Optometrists can work in a variety of settings, from private practices to hospitals to retail stores. Some notable employers in the field include LensCrafters, Kaiser Permanente, and the U.S. Department of Veterans Affairs. So if you're looking for a career that combines cutting-edge technology, meaningful patient interactions, and the opportunity to make a real difference in people's lives, consider a career in optometry!
The history of blood transfusions is a fascinating and important academic concept that can benefit high school students in many ways. Learning about the discovery of blood types and the science behind antibodies and antigens can help students understand the human body and the immune system. Additionally, the practical applications of this knowledge are vast, as blood transfusions have saved countless lives throughout history. By exploring this topic through reading, reflection, and self-directed projects, students can gain a deeper understanding of medical advancements and the impact they have on society. This can also inspire students to pursue careers in medical fields, where they can make a difference in the lives of others. Overall, the history of blood transfusions is a compelling and relatable topic that can encourage students to explore academic concepts independently and engage with the world around them.
New research has identified gold-based compounds that could treat multidrug-resistant "superbugs", with some effectiveness against several bacteria. Antibiotic resistance is a global public health threat, and the development of new antibiotics has stalled. Gold metalloantibiotics, compounds with a gold ion at their core, could be a promising new approach. Dr. Sara M. Soto Gonzalez and colleagues studied the activity of 19 gold complexes against a range of multidrug-resistant bacteria isolated from patients. The gold compounds were effective against at least one bacterial species studied, with some displaying potent activity against several multidrug-resistant bacteria.
Have you ever wondered if there was a way to rejuvenate scars and restore healthy skin? Well, researchers from Imperial College London have found that hair follicle transplants can do just that! In a new study, skin scars were treated with hair follicle transplants and showed remarkable changes towards the profile of healthy, uninjured skin. This opens up new avenues for treating scars and could even change our approach to preventing them.
Discover the secret behind Gram-negative bacteria's armor-like outer membrane! A new study led by Professor Colin Kleanthous at the University of Oxford sheds light on how bacteria like E. coli construct their outer membrane to resemble body armor, with implications for developing antibiotics.
An interdisciplinary UCLA research team has developed a tiny implantable device called SymphNode, which has been shown to be able to drive tumours into remission, eliminate metastasis, and prevent the growth of new tumours, resulting in longer survival in mice. This groundbreaking technology may decrease the risk of cancer returning, making it a potential addition to chemotherapy or other first-step treatments for a variety of cancers.
Have you ever wondered what it takes to be a heart doctor? Well, look no further because we've got the inside scoop on the exciting and rewarding field of cardiology! As a cardiologist, you'll be responsible for diagnosing and treating heart conditions, helping patients live longer, healthier lives. From heart attacks to arrhythmias, you'll have the knowledge and skills to provide life-saving care to those in need. But being a cardiologist isn't just about saving lives, it's also about preventing heart disease. You'll work with patients to develop healthy habits and manage risk factors, like high blood pressure and high cholesterol. And the best part? The field of cardiology is constantly evolving, with new treatments and technologies being developed all the time. You'll have the opportunity to stay at the forefront of medical advancements and make a real difference in the lives of your patients. Typical duties of a cardiologist include performing diagnostic tests, like electrocardiograms and echocardiograms, prescribing medication and lifestyle changes, and performing procedures like angioplasty and stenting. There are also many areas of specialisation within the field, such as electrophysiology and interventional cardiology. To become a cardiologist, you'll need to complete extensive education and training. This typically includes a bachelor's degree in a relevant field, such as biology or chemistry, followed by medical school and a residency in internal medicine. After that, you'll complete a fellowship in cardiology, where you'll gain specialised knowledge and skills. Helpful personal attributes for a career in cardiology include strong communication skills, attention to detail, and a passion for helping others. You'll also need to be able to work well under pressure and make quick decisions in life-or-death situations. Job prospects for cardiologists are excellent, with a growing demand for heart specialists around the world. Some notable potential employers include the Mayo Clinic, Cleveland Clinic, and Johns Hopkins Hospital, among many others. So, if you're looking for a challenging and rewarding career that allows you to make a real difference in the lives of others, consider becoming a cardiologist. Your heart (and your patients' hearts) will thank you!
Genome-edited CAR T-cells treated a young patient's incurable T-cell leukaemia, leading to complete remission after just 28 days. Designed and developed by researchers at UCL and GOSH, the treatment represents a cutting-edge approach that paves the way for other new treatments and ultimately better futures for sick children.
Are you fascinated by the human body and how it works? Do you dream of becoming a doctor and making a difference in people's lives? Then pre-medicine might be the perfect field of study for you! Pre-medicine is a challenging and rewarding field that prepares students for medical school and a career in healthcare. It encompasses a wide range of subjects, from biology and chemistry to anatomy and physiology. Through this field of study, you will gain a deep understanding of the human body and the diseases that affect it. Research in pre-medicine is constantly evolving, with new innovations and breakthroughs being made all the time. For example, recent studies have shown that stem cell therapy may be a promising treatment for a variety of conditions, from heart disease to Parkinson's. Additionally, academic figures like Dr. Anthony Fauci have made significant contributions to the field, particularly in the area of infectious diseases. At the undergraduate level, typical majors and modules include biology, chemistry, and biochemistry. These foundational courses provide a strong basis for further specialization in areas such as neuroscience, pharmacology, or genetics. For example, you could become a specialist in neurology and work with patients who have disorders like Alzheimer's or Parkinson's. The potential career paths for pre-med graduates are vast and varied. Many go on to become doctors, working in fields such as pediatrics, cardiology, or oncology. Others pursue careers in related fields, such as medical research or public health. Notable employers include world-renowned hospitals such as the Mayo Clinic and Johns Hopkins, as well as organizations like the World Health Organization and Doctors Without Borders. To succeed in pre-medicine, it's important to have a strong work ethic, a passion for learning, and excellent communication skills. You should also have a keen interest in science and a desire to make a difference in people's lives. In conclusion, pre-medicine is an exciting and challenging field of study that offers a wealth of opportunities for those who are passionate about healthcare. With a strong foundation in biology and chemistry, you can specialize in a variety of areas and pursue a rewarding career in medicine or related fields. So if you're ready to make a difference in the world, consider studying pre-medicine and joining the ranks of healthcare professionals who are changing lives every day.
Have you ever considered a career in Oncology? As an oncologist, you would be at the forefront of cancer care, helping patients navigate through one of the most challenging times of their lives. Not only would you be making a significant impact on the lives of those affected by cancer, but you would also be part of a field that is constantly evolving and advancing. As an oncologist, you would work with a team of healthcare professionals to diagnose and treat cancer patients. You would be responsible for developing treatment plans, monitoring patients' progress, and providing emotional support to patients and their families. Oncologists also play a vital role in cancer research, helping to develop new treatments and therapies. There are several specializations within the field of oncology, including medical oncology, radiation oncology, and surgical oncology. Medical oncologists focus on using chemotherapy and other medications to treat cancer, while radiation oncologists use radiation therapy to destroy cancer cells. Surgical oncologists, on the other hand, perform surgeries to remove cancerous tumors. To become an oncologist, you will need to complete a medical degree, followed by a residency in oncology. Popular undergraduate programs for aspiring oncologists include biology, chemistry, and pre-med. In addition to formal education, oncologists must possess excellent communication and interpersonal skills, as well as a strong desire to help others. Job prospects for oncologists are excellent, with a growing demand for cancer care worldwide. There are many potential employers in both the public and private sectors, including hospitals, research institutions, and pharmaceutical companies. Notable employers include Memorial Sloan Kettering Cancer Center, MD Anderson Cancer Center, and the National Cancer Institute. In conclusion, a career in oncology is both challenging and rewarding. By pursuing this career, you would be making a significant impact on the lives of cancer patients and their families, while also contributing to the advancement of cancer research and treatment. So if you have a passion for helping others and a desire to make a difference in the world, consider a career in oncology.
Researchers have identified lipid differences in patients with alcohol-related liver disease that could lead to earlier detection and new treatments. Sphingomyelins were found to be significantly reduced in scarred liver tissue, potentially serving as a biomarker for ALD. Learn more about this breakthrough research and its implications for the diagnosis and treatment of ALD.
Are you fascinated by the inner workings of the human body? Do you have a passion for technology and problem-solving? If so, a career as a Radiologic Technologist might just be the perfect fit for you! Radiologic Technologists are healthcare professionals who use imaging equipment to capture images of the body's internal structures. These images are then used by physicians to diagnose and treat a wide range of medical conditions. As a Radiologic Technologist, you'll have the opportunity to work with patients of all ages and backgrounds, making a real difference in their lives. One of the most appealing aspects of this field is the variety of specializations available. From diagnostic imaging to radiation therapy, Radiologic Technologists can choose to focus on a specific area of interest. This means that there's always something new to learn and explore! To become a Radiologic Technologist, you'll typically need to complete a two-year associate's degree program in Radiologic Technology. Many colleges and universities also offer four-year bachelor's degree programs in Radiologic Sciences, which can lead to more advanced positions in the field. In addition to formal education and training, there are several personal attributes that can help you succeed as a Radiologic Technologist. These include strong communication skills, attention to detail, and the ability to work well under pressure. Job prospects for Radiologic Technologists are excellent, with the field expected to grow by 9% over the next decade. This means that there will be plenty of opportunities for graduates to find rewarding and challenging positions in a variety of settings, including hospitals, clinics, and imaging centers. Some of the most notable and attractive potential employers in the field include the Mayo Clinic, Cleveland Clinic, and Johns Hopkins Hospital. These institutions are known for their commitment to innovation and excellence, and offer Radiologic Technologists the chance to work with some of the most advanced imaging equipment in the world. So if you're looking for a career that combines technology, healthcare, and problem-solving, consider becoming a Radiologic Technologist. With its many specializations, excellent job prospects, and potential for growth and advancement, it's a field that offers something for everyone!
Are you someone who loves to take care of their skin and is fascinated by the science of it all? Do you have an eye for detail and a passion for helping others look and feel their best? If so, then a career in dermatology might be the perfect fit for you! Dermatology is a branch of medicine that focuses on the diagnosis and treatment of skin, hair, and nail conditions. It's a field that's constantly evolving, with new research and technology being developed all the time. As a dermatologist, you'll have the opportunity to work with patients of all ages, from newborns to the elderly, and help them with a wide range of skin issues. One of the most appealing aspects of a career in dermatology is the variety of conditions you'll encounter. From acne and eczema to skin cancer and psoriasis, no two cases are the same. You'll have the chance to use your expertise to diagnose and treat these conditions, as well as perform cosmetic procedures such as Botox injections and laser hair removal. To become a dermatologist, you'll need to complete extensive education and training. This typically includes a four-year undergraduate degree in a science-related field such as biology or chemistry, followed by four years of medical school. After that, you'll need to complete a residency program in dermatology, which can take up to four years. In addition to a strong academic background, there are certain personal attributes that can be helpful in a career in dermatology. These include excellent communication skills, a compassionate nature, and a strong attention to detail. You'll also need to be comfortable working with patients of all ages and backgrounds, and be able to handle the emotional aspects of the job. The job prospects for dermatologists are excellent, with a strong demand for their services in both the public and private sectors. Some notable potential employers include hospitals, clinics, and private practices. You may also have the opportunity to work in research or academia, helping to develop new treatments and technologies for skin conditions. So if you have a passion for skin care and a desire to make a difference in people's lives, a career in dermatology might be the perfect choice for you. With hard work and dedication, you could be on your way to a fulfilling and rewarding career in this exciting field.
Are you interested in learning about a new antimicrobial coating material that can effectively kill bacteria and viruses, including MRSA and Covid-19? Researchers at the University of Nottingham's School of Pharmacy have used a common disinfectant and antiseptic to create this new material that could be used as an effective antimicrobial coating on a range of plastic products. This new study, published in Nano Select, offers an effective way to prevent the spread of pathogenic microorganisms and address the ever-increasing threat of antimicrobial resistance. Read more to find out how this material was created and how it can help in hospital settings.
Have you ever had a moment of inspiration that led to a groundbreaking invention? In 1816, a doctor named René Laennec had just that moment while walking through Paris. He observed children using a long piece of wood to amplify sound and later used this concept to create the stethoscope. By placing a rolled-up sheet of paper to a young woman's chest, he was able to hear her heartbeat with clarity. Laennec spent three years perfecting his invention, which eventually became the forerunner to the stethoscopes we still use today. Learning about the development of the stethoscope not only expands your knowledge of medical history but also inspires you to think creatively and use everyday observations to solve complex problems.
Stanford researchers have developed a smart bandage that painlessly falls away from the skin and tracks signs of recovery and infection. It even responds with electrical stimulation to hasten healing. The bandage resulted in 25% faster healing, greater blood flow to injured tissue, and less scarring in animal studies. The bandage is just one example of how Stanford researchers combine organic chemistry and novel materials to reimagine medical devices in more powerful, personal, and unobtrusive ways.
Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, making it easier for patients to receive the medicine they need to manage their symptoms. But how do these devices work, and what scientific principles underlie their design? At the heart of an inhaler is the aerosol, a fine mist of medication that is delivered directly to the lungs. To create this mist, inhalers use a propellant, which expands rapidly upon release, creating a burst of pressure that forces the medication out of the device and into the airways. One key challenge in designing inhalers is ensuring that the aerosol particles are small enough to be easily inhaled, yet large enough to deposit effectively in the lungs. This is where the science of aerodynamics comes into play, as researchers work to optimize the shape and size of the particles to achieve the ideal balance of delivery efficiency and patient comfort. Recent advancements in inhaler technology have led to the development of smart inhalers, which use sensors and digital connectivity to monitor patient use and provide personalized feedback and reminders. This innovation has the potential to improve patient adherence and outcomes, and is just one example of how inhaler delivery systems continue to evolve and improve. Leading academics in the field include Dr. Richard Costello, a respiratory physician and clinical scientist at the Royal College of Surgeons in Ireland, and Dr. Omar Usmani, a consultant physician in respiratory medicine at the Royal Brompton Hospital and professor of respiratory medicine at Imperial College London. These experts have contributed to important research on inhaler technology and the treatment of respiratory diseases, and continue to drive innovation in the field. Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, allowing patients to manage their symptoms with greater ease and precision. By understanding the science behind aerosol medicine and the principles that underlie inhaler design, we can appreciate the incredible innovation that has made this possible.
The discovery of antibiotics in the 20th Century revolutionized healthcare, adding an average of 20 years to everyone's life. However, the overuse and misuse of antibiotics have led to the rise of antibiotic-resistant bacteria, or superbugs, which could cause a health crisis worse than any we've experienced this century. By 2050, it's predicted that 10 million people will die every year from complications with superbugs. A world without antibiotics would be catastrophic, impacting our food chain and causing many to die younger than they do now. As students, it's important to understand the consequences of antibiotic misuse and to be cautious when taking antibiotics. By finishing the full course of antibiotics, we can prevent the development of antibiotic-resistant bacteria. Additionally, we should be aware of the need for new antibiotics and support efforts to fund research into finding them. Anticipating problems and taking action before they become global crises is key to protecting our health and future.
Activities
Academic Extensions
Thought Experiments