Article
More like this
Are you fascinated by the inner workings of the human body? Do you have a passion for technology and problem-solving? If so, a career as a Radiologic Technologist might just be the perfect fit for you! Radiologic Technologists are healthcare professionals who use imaging equipment to capture images of the body's internal structures. These images are then used by physicians to diagnose and treat a wide range of medical conditions. As a Radiologic Technologist, you'll have the opportunity to work with patients of all ages and backgrounds, making a real difference in their lives. One of the most appealing aspects of this field is the variety of specializations available. From diagnostic imaging to radiation therapy, Radiologic Technologists can choose to focus on a specific area of interest. This means that there's always something new to learn and explore! To become a Radiologic Technologist, you'll typically need to complete a two-year associate's degree program in Radiologic Technology. Many colleges and universities also offer four-year bachelor's degree programs in Radiologic Sciences, which can lead to more advanced positions in the field. In addition to formal education and training, there are several personal attributes that can help you succeed as a Radiologic Technologist. These include strong communication skills, attention to detail, and the ability to work well under pressure. Job prospects for Radiologic Technologists are excellent, with the field expected to grow by 9% over the next decade. This means that there will be plenty of opportunities for graduates to find rewarding and challenging positions in a variety of settings, including hospitals, clinics, and imaging centers. Some of the most notable and attractive potential employers in the field include the Mayo Clinic, Cleveland Clinic, and Johns Hopkins Hospital. These institutions are known for their commitment to innovation and excellence, and offer Radiologic Technologists the chance to work with some of the most advanced imaging equipment in the world. So if you're looking for a career that combines technology, healthcare, and problem-solving, consider becoming a Radiologic Technologist. With its many specializations, excellent job prospects, and potential for growth and advancement, it's a field that offers something for everyone!
Are you interested in learning about a new antimicrobial coating material that can effectively kill bacteria and viruses, including MRSA and Covid-19? Researchers at the University of Nottingham's School of Pharmacy have used a common disinfectant and antiseptic to create this new material that could be used as an effective antimicrobial coating on a range of plastic products. This new study, published in Nano Select, offers an effective way to prevent the spread of pathogenic microorganisms and address the ever-increasing threat of antimicrobial resistance. Read more to find out how this material was created and how it can help in hospital settings.
Stanford researchers have developed a smart bandage that painlessly falls away from the skin and tracks signs of recovery and infection. It even responds with electrical stimulation to hasten healing. The bandage resulted in 25% faster healing, greater blood flow to injured tissue, and less scarring in animal studies. The bandage is just one example of how Stanford researchers combine organic chemistry and novel materials to reimagine medical devices in more powerful, personal, and unobtrusive ways.
Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, making it easier for patients to receive the medicine they need to manage their symptoms. But how do these devices work, and what scientific principles underlie their design? At the heart of an inhaler is the aerosol, a fine mist of medication that is delivered directly to the lungs. To create this mist, inhalers use a propellant, which expands rapidly upon release, creating a burst of pressure that forces the medication out of the device and into the airways. One key challenge in designing inhalers is ensuring that the aerosol particles are small enough to be easily inhaled, yet large enough to deposit effectively in the lungs. This is where the science of aerodynamics comes into play, as researchers work to optimize the shape and size of the particles to achieve the ideal balance of delivery efficiency and patient comfort. Recent advancements in inhaler technology have led to the development of smart inhalers, which use sensors and digital connectivity to monitor patient use and provide personalized feedback and reminders. This innovation has the potential to improve patient adherence and outcomes, and is just one example of how inhaler delivery systems continue to evolve and improve. Leading academics in the field include Dr. Richard Costello, a respiratory physician and clinical scientist at the Royal College of Surgeons in Ireland, and Dr. Omar Usmani, a consultant physician in respiratory medicine at the Royal Brompton Hospital and professor of respiratory medicine at Imperial College London. These experts have contributed to important research on inhaler technology and the treatment of respiratory diseases, and continue to drive innovation in the field. Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, allowing patients to manage their symptoms with greater ease and precision. By understanding the science behind aerosol medicine and the principles that underlie inhaler design, we can appreciate the incredible innovation that has made this possible.
The story of the creation of the Band-Aid in the 1920s highlights the importance of innovation and problem-solving. Earle Dickson, an employee at Johnson and Johnson, saw a need for a small adhesive bandage for his accident-prone wife and came up with a solution using the company's sterile gauze and adhesive strips. His invention became a household item and has since been produced in the billions. This story shows how simple solutions to everyday problems can lead to great success. As students, developing problem-solving skills and creativity can benefit both intellectually and practically in future careers and personal life. The Band-Aid story is a reminder that innovation can come from anyone and encourages us to explore our own ideas and solutions to problems we encounter.
Get ready for a game-changing medical innovation! Engineers from MIT have developed a biocompatible tissue glue inspired by barnacles that can quickly stop bleeding and seal wounds in a matter of seconds. This new paste could revolutionize the way we treat traumatic injuries and control bleeding during surgeries.
Did you know that spending just a few weeks in space can lead to a 20% loss of muscle mass? That's because in microgravity, astronauts don't need to use their muscles as much to stay upright or move around. This lack of exercise leads to a breakdown in muscle tissue and a loss of strength. But it's not just astronauts who are affected by muscle degradation. People on bed rest, those with certain medical conditions, and even the elderly can experience a loss of muscle mass and function. So what's happening on a cellular level? When muscles aren't used, they begin to break down proteins for energy. This process, called protein degradation, can lead to the loss of muscle mass and function. But don't worry, researchers are working hard to find ways to combat muscle degradation in space and on Earth. One approach is to use exercise machines that simulate gravity, which have been shown to maintain muscle mass in astronauts. Other research has focused on using drugs to block the protein degradation process and promote muscle growth. Leading academics in the field of muscle degradation include Dr. Robert Fitts, a professor of biology at Marquette University, who has researched the effects of microgravity on muscle mass and function. Dr. Lori Ploutz-Snyder, a professor at the University of Michigan, has also studied muscle atrophy and is working on developing exercise programs to prevent it. Overall, muscle degradation is a serious concern for both astronauts and people on Earth. By learning more about the causes and potential solutions, we can work towards maintaining healthy muscles and preventing muscle loss.
Have you ever wondered what it takes to be a heart doctor? Well, look no further because we've got the inside scoop on the exciting and rewarding field of cardiology! As a cardiologist, you'll be responsible for diagnosing and treating heart conditions, helping patients live longer, healthier lives. From heart attacks to arrhythmias, you'll have the knowledge and skills to provide life-saving care to those in need. But being a cardiologist isn't just about saving lives, it's also about preventing heart disease. You'll work with patients to develop healthy habits and manage risk factors, like high blood pressure and high cholesterol. And the best part? The field of cardiology is constantly evolving, with new treatments and technologies being developed all the time. You'll have the opportunity to stay at the forefront of medical advancements and make a real difference in the lives of your patients. Typical duties of a cardiologist include performing diagnostic tests, like electrocardiograms and echocardiograms, prescribing medication and lifestyle changes, and performing procedures like angioplasty and stenting. There are also many areas of specialisation within the field, such as electrophysiology and interventional cardiology. To become a cardiologist, you'll need to complete extensive education and training. This typically includes a bachelor's degree in a relevant field, such as biology or chemistry, followed by medical school and a residency in internal medicine. After that, you'll complete a fellowship in cardiology, where you'll gain specialised knowledge and skills. Helpful personal attributes for a career in cardiology include strong communication skills, attention to detail, and a passion for helping others. You'll also need to be able to work well under pressure and make quick decisions in life-or-death situations. Job prospects for cardiologists are excellent, with a growing demand for heart specialists around the world. Some notable potential employers include the Mayo Clinic, Cleveland Clinic, and Johns Hopkins Hospital, among many others. So, if you're looking for a challenging and rewarding career that allows you to make a real difference in the lives of others, consider becoming a cardiologist. Your heart (and your patients' hearts) will thank you!
Are you fascinated by the human heart and its complex workings? Do you want to be at the forefront of medical research and innovation? Then studying cardiology could be the perfect fit for you! Cardiology is the study of the heart and its functions, as well as the diagnosis and treatment of related diseases. It's a field that combines biology, physics, and medicine to understand the intricate mechanisms of the heart and how they affect our overall health. One of the most exciting aspects of cardiology is the potential for innovation and discovery. Researchers in this field are constantly developing new treatments and technologies to improve patient outcomes. For example, recent breakthroughs in stem cell research have opened up new possibilities for repairing damaged heart tissue. Some of the most well-known figures in cardiology include Dr. Robert Califf, former Commissioner of the FDA and a leading expert in cardiovascular disease, and Dr. Valentin Fuster, a world-renowned cardiologist who has made significant contributions to the study of atherosclerosis. As an undergraduate student of cardiology, you'll typically take courses in anatomy, physiology, pharmacology, and epidemiology, among others. You'll also have the opportunity to specialize in areas like electrophysiology, interventional cardiology, or cardiac imaging. After completing your degree, you'll be well-prepared for a range of careers in the healthcare industry. You could work as a cardiologist in a hospital or clinic, or pursue a career in medical research or medical device development. Some of the most popular employers in this field include the American Heart Association, Mayo Clinic, and the National Institutes of Health. To succeed in cardiology, you'll need to have a strong background in science and math, as well as excellent critical thinking and problem-solving skills. A passion for helping others and a desire to make a difference in people's lives are also key attributes for success in this field. So if you're ready to take on the challenge of studying the heart and its functions, consider a career in cardiology. Your work could help save lives and improve the health of people around the world!
An interdisciplinary UCLA research team has developed a tiny implantable device called SymphNode, which has been shown to be able to drive tumours into remission, eliminate metastasis, and prevent the growth of new tumours, resulting in longer survival in mice. This groundbreaking technology may decrease the risk of cancer returning, making it a potential addition to chemotherapy or other first-step treatments for a variety of cancers.
Stanford University researchers, in collaboration with other institutions, have developed a molecule that prevents the spike protein of the SARS-CoV-2 virus from twisting and infecting cells, including those with new variants. This new type of antiviral therapeutic, called the longHR2\_42 inhibitor, may be delivered via inhaler to treat early infections and prevent severe illness. The team's detailed understanding of the twisted structure of the virus's spike protein allowed them to create a longer molecule that is more effective than previous attempts to block the virus. Their groundbreaking research may lead to a promising solution to combat COVID-19.
Do you have a passion for science and a desire to help people? If so, Optometry may be the perfect field of study for you. Optometry is a branch of medicine that focuses on the eyes and vision. It is a fascinating field that combines science, technology, and patient care to help people see clearly and live their best lives. Optometry is all about helping people to see the world around them. As an optometrist, you will use your knowledge of the eyes and vision to diagnose and treat a range of eye conditions, from simple refractive errors to more complex diseases such as glaucoma and cataracts. You will also help people to maintain their eye health and prevent vision problems from developing. One of the most exciting aspects of Optometry is the constant innovation and research that is taking place in the field. From new technologies that allow for more accurate diagnosis and treatment, to groundbreaking research into the causes and treatments of eye diseases, there is always something new and exciting happening in Optometry. At the undergraduate level, typical majors and modules include anatomy and physiology of the eye, optics, visual perception, and ocular disease. Students will also have the opportunity to gain practical experience through clinical placements and internships. After completing their undergraduate degree, students can go on to specialize in areas such as pediatric optometry, contact lenses, or vision therapy. With a degree in Optometry, there are a range of potential job opportunities available. Optometrists can work in private practice, hospitals, clinics, or for government agencies. Some notable employers in the field include Bausch + Lomb, Johnson & Johnson, and Essilor. To succeed in Optometry, students should have a strong background in science, particularly biology and chemistry. They should also possess excellent communication and interpersonal skills, as they will be working closely with patients on a daily basis. If you are passionate about science and helping people, a degree in Optometry may be the perfect choice for you.
New research has identified gold-based compounds that could treat multidrug-resistant "superbugs", with some effectiveness against several bacteria. Antibiotic resistance is a global public health threat, and the development of new antibiotics has stalled. Gold metalloantibiotics, compounds with a gold ion at their core, could be a promising new approach. Dr. Sara M. Soto Gonzalez and colleagues studied the activity of 19 gold complexes against a range of multidrug-resistant bacteria isolated from patients. The gold compounds were effective against at least one bacterial species studied, with some displaying potent activity against several multidrug-resistant bacteria.
Ballet dancers can perform pirouettes without feeling dizzy. Researchers found that years of training enable dancers to suppress signals from the balance organs in the inner ear. This discovery could help improve treatment for patients with chronic dizziness. The study also revealed differences in brain structure between dancers and non-dancers. Discover the secrets of dancers' brains and how it could lead to better treatment for chronic dizziness.
The story of Dr. William Halsted and Caroline Hampton highlights the importance of problem-solving and innovation in academia. When Hampton developed a severe reaction to the disinfectants used before surgery, Halsted didn't just accept the status quo. Instead, he used his knowledge and connections to create a solution - thin rubber gloves. This moment of vision not only saved Hampton's hands but also led to the creation of a multibillion-dollar industry. Learning about problem-solving and innovation in academia can benefit students both intellectually and practically. By developing these skills, students can become better equipped to tackle real-world problems and create solutions that can make a difference.
As the world faces increasingly urgent environmental challenges, there is a growing need for sustainable solutions across all industries, including healthcare. Biodegradable implants are one such solution, with the potential to revolutionize the medical field while minimizing its environmental impact. Unlike traditional implants made from non-biodegradable materials, such as metal or plastic, biodegradable implants are designed to break down over time, leaving no harmful residue behind. This means they not only benefit the patient, but also the environment. One area where biodegradable implants are particularly promising is in orthopedic surgery. According to a study published in the Journal of Orthopaedic Research, biodegradable implants made from natural materials such as collagen and silk have shown promise in promoting bone growth and healing. Leading academics in the field include Dr. Jennifer Elisseeff, a professor of biomedical engineering at Johns Hopkins University, whose research has focused on developing biodegradable scaffolds for tissue engineering, and Dr. Lisa E. Freed, a professor of materials science and engineering at the University of California, Berkeley, who has worked on developing biodegradable implants for orthopedic applications. But the potential of biodegradable implants extends beyond orthopedics. They can also be used in drug delivery, wound healing, and other areas of medicine. In fact, researchers at the University of Cambridge are currently developing biodegradable implants for use in cancer treatment. As promising as biodegradable implants are, they are not without their challenges. For example, they must be designed to break down at just the right rate, neither too quickly nor too slowly, in order to ensure optimal healing. But with continued research and development, biodegradable implants have the potential to transform the medical field for the better.
Could the use of steroids in the military be ethical? Despite being banned, steroids are commonly used to enhance physical performance by soldiers. While there are concerns about the health and behavioral impacts, researchers argue that the use of steroids may be necessary to create "super soldiers" in a highly competitive and demanding environment. But is it worth the risks? Explore the controversial topic and weigh the ethical implications of using performance-enhancing drugs in the armed forces.
Chemotherapy is a type of cancer treatment that uses drugs to kill rapidly dividing cancer cells in the body. The drugs are delivered through pills and injections and are toxic to all cells in the body, including healthy ones. However, cancer cells are more susceptible to the effects of chemotherapy because they multiply rapidly. Chemotherapy drugs can damage hair follicles, cells of the mouth, gastrointestinal lining, reproductive system, and bone marrow, which can cause side effects such as hair loss, fatigue, infertility, nausea, and vomiting. Despite these side effects, chemotherapy has greatly improved the outlook for many cancer patients. Advances in treatment have led to up to 95% survival rates for testicular cancer and 60% remission rates for acute myeloid leukemia. Researchers are still developing more precise interventions to target cancer cells while minimizing harm to healthy tissues. Learning about chemotherapy can help high school students understand the science behind cancer treatment and the importance of ongoing research to improve outcomes for patients.
Do you have a passion for helping others and a fascination with the human eye? If so, a career in optometry could be the perfect fit for you! Optometrists are healthcare professionals who specialize in diagnosing and treating vision problems and eye diseases. They play a vital role in helping people maintain healthy eyes and clear vision. As an optometrist, you'll have the opportunity to work with patients of all ages, from children to seniors. You'll use state-of-the-art technology to examine patients' eyes and diagnose problems such as nearsightedness, farsightedness, and astigmatism. You'll also be able to detect and treat eye diseases such as glaucoma, cataracts, and macular degeneration. One of the most appealing aspects of a career in optometry is the ability to make a real difference in people's lives. Imagine helping a child see clearly for the first time or saving someone's vision by detecting a serious eye disease early on. Optometrists have the power to improve their patients' quality of life in meaningful ways. In addition to traditional optometry, there are many areas of specialization within the field. Some optometrists choose to focus on pediatric optometry, working with children to ensure they have healthy eyes and clear vision. Others specialize in contact lenses, helping patients find the perfect lenses to fit their unique needs. And still others focus on low vision, working with patients who have severe visual impairments to help them navigate the world around them. To become an optometrist, you'll need to complete a Doctor of Optometry (OD) degree from an accredited optometry school. Popular undergraduate majors for aspiring optometrists include biology, chemistry, and physics. In addition to completing a rigorous academic program, you'll also need to pass a national board exam to become licensed to practice. Helpful personal attributes for a career in optometry include strong communication skills, attention to detail, and a passion for helping others. You'll also need to be comfortable using technology and working with a wide range of patients. Job prospects for optometrists are strong, with a projected growth rate of 10% over the next decade. Optometrists can work in a variety of settings, from private practices to hospitals to retail stores. Some notable employers in the field include LensCrafters, Kaiser Permanente, and the U.S. Department of Veterans Affairs. So if you're looking for a career that combines cutting-edge technology, meaningful patient interactions, and the opportunity to make a real difference in people's lives, consider a career in optometry!
The Cancer Chronicles takes readers on a fascinating journey through the history and recent advances of cancer research, revealing surprising discoveries and challenging everything we thought we knew about the disease. Science writer George Johnson delves into every discipline from evolutionary biology to game theory and physics to extract fact from myth and hype. He describes tumors that evolve like alien creatures, paleo-oncologists who uncover petrified tumors clinging to the skeletons of dinosaurs, and the surprising reversals in science's comprehension of the causes of cancer. This intellectually vibrant exploration of cancer research is a must-read for anyone seeking a new understanding of the disease. Recommended for students interested in biology, medicine, and health sciences, as well as anyone whose life has been affected by cancer, The Cancer Chronicles offers a new perspective on the disease. This book is relevant to those pursuing careers in oncology, epidemiology, and clinical trials, as well as those interested in environmental health and public policy. The interdisciplinary approach taken by George Johnson, exploring cancer research through the lens of evolutionary biology, game theory, and physics, makes this book a valuable resource for anyone looking to broaden their understanding of the disease. The Cancer Chronicles is a compelling read that offers a unique perspective on cancer research and the human experience of the disease.
Activities
People and Organizations