Article
More like this
Weight loss surgery decreases bile acids linked to higher appetite, but lifestyle changes could mimic the effect. Researchers from King's, the University of Nottingham, and Amsterdam University Medical Centre found that gut microbes play a key role in regulating bile acids and metabolism. The study's results have important implications for targeted interventions for metabolic disorders focused on the gut microbiome. Co-author Professor Tim Spector, the co-founder of personalised nutrition company ZOE, highlights the promise of gut microbiome testing in supporting metabolic health.
The Alzheimer's Solution is a groundbreaking book that offers a comprehensive program for preventing Alzheimer's disease and improving cognitive function. Based on the largest clinical and observational study to date, this revolutionary book reveals how the brain is a living universe, directly influenced by nutrition, exercise, stress, sleep, and engagement. The authors, neurologists and codirectors of the Brain Health and Alzheimer's Prevention Program at Loma Linda University Medical Center, present a personalized assessment for evaluating risk, a five-part program for prevention and symptom-reversal, and day-by-day guides for optimizing cognitive function. Don't let Alzheimer's disease affect you or your loved ones; take control of your brain's future with The Alzheimer's Solution. Recommended for anyone interested in brain health, aging, and disease prevention, The Alzheimer's Solution offers a comprehensive program for preventing Alzheimer's disease and improving cognitive function. This book is particularly relevant to individuals with a family history of Alzheimer's disease or those who are interested in taking proactive measures to reduce their risk of cognitive decline. It is also useful for healthcare professionals, researchers, and policymakers who are interested in the latest findings in the field of Alzheimer's disease prevention and treatment. Additionally, this book can be of interest to anyone looking to optimize their brain health through lifestyle interventions such as nutrition, exercise, stress management, and engagement.
Researchers have identified lipid differences in patients with alcohol-related liver disease that could lead to earlier detection and new treatments. Sphingomyelins were found to be significantly reduced in scarred liver tissue, potentially serving as a biomarker for ALD. Learn more about this breakthrough research and its implications for the diagnosis and treatment of ALD.
Sugar is a staple in the modern diet, but it can also be a health hazard when consumed in excess. As a result, sugar substitutes have become increasingly popular in recent years. In this write-up, we will explore the science and effectiveness of sugar substitutes, including the various types of sugar substitutes and their effects on the human body. One of the most widely used sugar substitutes is aspartame, which is commonly found in diet soda and other low-calorie products. While aspartame has been the subject of much debate, studies have shown that it is safe for human consumption in moderate amounts. Another popular sugar substitute is stevia, which is derived from a plant and has no calories. Stevia has been shown to be an effective sugar substitute for people with diabetes, as it does not raise blood sugar levels. But not all sugar substitutes are created equal. For example, sugar alcohols like xylitol and erythritol can cause digestive issues when consumed in large quantities. And some artificial sweeteners like saccharin have been linked to an increased risk of cancer. Leading academics in the field of sugar substitutes include Dr. Marion Nestle, a professor of nutrition at New York University, and Dr. Richard Mattes, a professor of nutrition science at Purdue University. These experts have conducted extensive research on the effects of sugar substitutes on the human body and can provide valuable insights into the topic. The science and effectiveness of sugar substitutes are fascinating topics that can inspire students to explore the world of nutrition and health. By encouraging independent exploration and self-directed projects, we can empower high school students to take ownership of their learning and develop a lifelong love of academic inquiry.
Metabolism is a complex and essential process that occurs in every cell of our body. It powers everything from our heartbeat to growing hair and converting food into energy. Despite what we hear, exercise has a limited impact on our metabolic rate, which is mostly genetic and related to body size and age. However, understanding our metabolism can help us manage our energy more effectively, leading to better health and well-being. Learning about the science of energy management can be intellectually stimulating and practically beneficial, allowing us to make informed choices about our diet, exercise, and overall lifestyle. So, let's demystify metabolism and discover the secrets of energy management for a healthier and happier life.
Stanford University researchers, in collaboration with other institutions, have developed a molecule that prevents the spike protein of the SARS-CoV-2 virus from twisting and infecting cells, including those with new variants. This new type of antiviral therapeutic, called the longHR2\_42 inhibitor, may be delivered via inhaler to treat early infections and prevent severe illness. The team's detailed understanding of the twisted structure of the virus's spike protein allowed them to create a longer molecule that is more effective than previous attempts to block the virus. Their groundbreaking research may lead to a promising solution to combat COVID-19.
Discover the secret behind Gram-negative bacteria's armor-like outer membrane! A new study led by Professor Colin Kleanthous at the University of Oxford sheds light on how bacteria like E. coli construct their outer membrane to resemble body armor, with implications for developing antibiotics.
Mitochondria are often referred to as the powerhouses of the cell and for good reason. These tiny organelles are responsible for producing the energy that our cells need to function. In this write-up, we'll explore the magic of mitochondria and why they are so important to our health and well-being. Did you know that mitochondria are sometimes referred to as the "second genome"? This is because they have their own DNA and can replicate independently of the cell's nucleus. This discovery, made by Dr. Douglas C. Wallace in the late 1970s, revolutionized our understanding of cellular biology. Another interesting fact about mitochondria is that they are thought to have originated from a symbiotic relationship between early cells and primitive bacteria. Over time, the two organisms evolved together to form the cells that make up our bodies today. This theory, known as the endosymbiotic theory, was first proposed by Dr. Lynn Margulis in the 1960s. So, what exactly do mitochondria do? Well, they are responsible for producing energy in the form of ATP (adenosine triphosphate) through a process called cellular respiration. This energy is then used by our cells to carry out all of their functions, from moving and growing, to repairing and reproducing. It's important to note that our cells can't survive without energy, and without mitochondria, we wouldn't be able to produce enough energy to support our bodies. This is why mitochondria are so critical to our health and well-being. By learning more about the magic of mitochondria, you'll gain a deeper understanding of cellular biology and the role that these tiny organelles play in our lives. So, get reading, reflecting, and exploring!
New research has identified gold-based compounds that could treat multidrug-resistant "superbugs", with some effectiveness against several bacteria. Antibiotic resistance is a global public health threat, and the development of new antibiotics has stalled. Gold metalloantibiotics, compounds with a gold ion at their core, could be a promising new approach. Dr. Sara M. Soto Gonzalez and colleagues studied the activity of 19 gold complexes against a range of multidrug-resistant bacteria isolated from patients. The gold compounds were effective against at least one bacterial species studied, with some displaying potent activity against several multidrug-resistant bacteria.
The world is still facing daily COVID-19 infections and the threat of virus mutation, but it's not too late to change the game. A pandemic vaccine alliance, similar to NATO, could be the solution to overcome the "free-rider problem" in global health efforts and ensure the world's biological security.
Discover how human evolution has led to unique diseases like knee osteoarthritis, affecting millions worldwide. Professor Terence D. Capellini shares genetic research on the link between bipedalism and knee osteoarthritis, and how identifying high-risk patients at an early age can inform future therapies. Explore the Developmental and Evolutionary Genetics Lab's work and hypotheses published in his 2020 paper "Evolutionary Selection and Constraint on Human Knee Chondrocyte Regulation Impacts Osteoarthritis Risk." Join the Harvard Museums of Science & Culture's ongoing series to learn more.
Do you have a passion for helping others and a fascination with the human eye? If so, a career in optometry could be the perfect fit for you! Optometrists are healthcare professionals who specialize in diagnosing and treating vision problems and eye diseases. They play a vital role in helping people maintain healthy eyes and clear vision. As an optometrist, you'll have the opportunity to work with patients of all ages, from children to seniors. You'll use state-of-the-art technology to examine patients' eyes and diagnose problems such as nearsightedness, farsightedness, and astigmatism. You'll also be able to detect and treat eye diseases such as glaucoma, cataracts, and macular degeneration. One of the most appealing aspects of a career in optometry is the ability to make a real difference in people's lives. Imagine helping a child see clearly for the first time or saving someone's vision by detecting a serious eye disease early on. Optometrists have the power to improve their patients' quality of life in meaningful ways. In addition to traditional optometry, there are many areas of specialization within the field. Some optometrists choose to focus on pediatric optometry, working with children to ensure they have healthy eyes and clear vision. Others specialize in contact lenses, helping patients find the perfect lenses to fit their unique needs. And still others focus on low vision, working with patients who have severe visual impairments to help them navigate the world around them. To become an optometrist, you'll need to complete a Doctor of Optometry (OD) degree from an accredited optometry school. Popular undergraduate majors for aspiring optometrists include biology, chemistry, and physics. In addition to completing a rigorous academic program, you'll also need to pass a national board exam to become licensed to practice. Helpful personal attributes for a career in optometry include strong communication skills, attention to detail, and a passion for helping others. You'll also need to be comfortable using technology and working with a wide range of patients. Job prospects for optometrists are strong, with a projected growth rate of 10% over the next decade. Optometrists can work in a variety of settings, from private practices to hospitals to retail stores. Some notable employers in the field include LensCrafters, Kaiser Permanente, and the U.S. Department of Veterans Affairs. So if you're looking for a career that combines cutting-edge technology, meaningful patient interactions, and the opportunity to make a real difference in people's lives, consider a career in optometry!
Did you know that adults catch more than 150 colds throughout their lives, and that a single family of viruses causes 30 to 50% of all colds? Understanding the complex relationship between viruses and our immune systems is not only fascinating, but also highly relevant to our daily lives. By reading about pleconaril, rhinovirus, and CRISPR, you'll learn about the science behind vaccines and antiviral drugs, and how they could help us tackle the common cold. But beyond that, exploring this topic will help you appreciate the incredible complexity and resilience of our immune systems, and the importance of maintaining our health. So grab a cup of tea and your favorite notebook, and get ready to dive into the fascinating world of viruses and immune systems!
Do you have a passion for science and a desire to help people? If so, Optometry may be the perfect field of study for you. Optometry is a branch of medicine that focuses on the eyes and vision. It is a fascinating field that combines science, technology, and patient care to help people see clearly and live their best lives. Optometry is all about helping people to see the world around them. As an optometrist, you will use your knowledge of the eyes and vision to diagnose and treat a range of eye conditions, from simple refractive errors to more complex diseases such as glaucoma and cataracts. You will also help people to maintain their eye health and prevent vision problems from developing. One of the most exciting aspects of Optometry is the constant innovation and research that is taking place in the field. From new technologies that allow for more accurate diagnosis and treatment, to groundbreaking research into the causes and treatments of eye diseases, there is always something new and exciting happening in Optometry. At the undergraduate level, typical majors and modules include anatomy and physiology of the eye, optics, visual perception, and ocular disease. Students will also have the opportunity to gain practical experience through clinical placements and internships. After completing their undergraduate degree, students can go on to specialize in areas such as pediatric optometry, contact lenses, or vision therapy. With a degree in Optometry, there are a range of potential job opportunities available. Optometrists can work in private practice, hospitals, clinics, or for government agencies. Some notable employers in the field include Bausch + Lomb, Johnson & Johnson, and Essilor. To succeed in Optometry, students should have a strong background in science, particularly biology and chemistry. They should also possess excellent communication and interpersonal skills, as they will be working closely with patients on a daily basis. If you are passionate about science and helping people, a degree in Optometry may be the perfect choice for you.
The immune system is a crucial part of our body's interconnected system, and a healthy gut microbiome is critical to a healthy immune system. Rather than trying to boost our immune system, we should focus on supporting it through a healthy lifestyle, including regular exercise, a diverse diet with plenty of fiber and polyphenols, stress reduction, and good sleep. While there is no magic pill to boost our immune response, scientists are constantly developing new drug treatments and therapies to combat a wide range of diseases. It is also important to note that risky procedures such as faecal transplants should only be done within the confines of a medical clinic. By understanding how our immune system works, we can take steps to keep it healthy and help win the war against infection.
Are you interested in science and making a difference in people's lives? A career in pharmaceutical research might be just what you're looking for! Pharmaceutical research is an exciting field that involves discovering and developing new drugs and therapies to treat and cure diseases. As a pharmaceutical researcher, you will have the opportunity to work on cutting-edge research projects that could change the lives of millions of people. For example, did you know that the development of the COVID-19 vaccines is a result of years of pharmaceutical research? You could be part of the next breakthrough in medicine! In this field, your typical duties will include conducting laboratory experiments, analyzing data, developing new drugs, and testing their safety and effectiveness. You may also specialize in a particular area, such as drug design, pharmacology, or clinical research. To become a pharmaceutical researcher, you will need to pursue a degree in a relevant field, such as chemistry, biology, or pharmacology. Popular undergraduate programs and majors include Biochemistry, Pharmaceutical Sciences, and Medicinal Chemistry. A graduate degree in pharmaceutical research is also highly desirable and may be required for some positions. Helpful personal attributes for this field include strong critical thinking skills, attention to detail, and excellent communication skills. A passion for science and a desire to make a difference in the world are also important. The job prospects for pharmaceutical researchers are promising. With the aging population and increasing demand for new drugs and therapies, the demand for skilled researchers is expected to grow. Notable and attractive potential employers in this field include pharmaceutical companies such as Pfizer, Merck, and Novartis, as well as government agencies such as the National Institutes of Health (NIH) and the Food and Drug Administration (FDA).
Have you ever wondered what happens to your blood after it's drawn at the doctor's office? Or how doctors diagnose illnesses and diseases? Enter the world of Medical Laboratory Science, where the magic happens behind the scenes. As a Medical Laboratory Scientist, your role is crucial in the healthcare industry. You'll use advanced laboratory techniques and equipment to analyze patient samples, such as blood, tissue, and bodily fluids, to help diagnose and treat diseases. You'll work with a team of healthcare professionals, including doctors and nurses, to provide accurate and timely results that inform patient care. But what makes this career so appealing? For starters, it's a constantly evolving field. With new technologies and discoveries, you'll always be learning and adapting to stay at the forefront of your profession. Plus, you'll have the satisfaction of knowing that your work directly impacts patient outcomes and helps save lives. In terms of duties, Medical Laboratory Scientists can specialize in a variety of areas, such as microbiology, hematology, or immunology. You may also work in related fields, such as research or public health. Typical tasks include analyzing samples, interpreting results, and communicating findings to healthcare providers. To become a Medical Laboratory Scientist, you'll need at least a Bachelor's degree in Medical Laboratory Science or a related field. Popular undergraduate programs include Biology, Chemistry, and Medical Technology. You'll also need to complete a clinical rotation and pass a certification exam. Helpful personal attributes for this career include attention to detail, critical thinking skills, and the ability to work well under pressure. You'll also need strong communication skills to effectively communicate with healthcare providers and patients. Job prospects for Medical Laboratory Scientists are strong, with a projected growth rate of 11% from 2018 to 2028. You can find job opportunities in a variety of settings, including hospitals, clinics, research labs, and government agencies. Notable employers include Mayo Clinic, Quest Diagnostics, and the Centers for Disease Control and Prevention. So if you're interested in a career that combines science, technology, and healthcare, consider exploring the world of Medical Laboratory Science. Who knows - you could be the next person to discover a life-saving breakthrough!
Have you ever considered a career in Oncology? As an oncologist, you would be at the forefront of cancer care, helping patients navigate through one of the most challenging times of their lives. Not only would you be making a significant impact on the lives of those affected by cancer, but you would also be part of a field that is constantly evolving and advancing. As an oncologist, you would work with a team of healthcare professionals to diagnose and treat cancer patients. You would be responsible for developing treatment plans, monitoring patients' progress, and providing emotional support to patients and their families. Oncologists also play a vital role in cancer research, helping to develop new treatments and therapies. There are several specializations within the field of oncology, including medical oncology, radiation oncology, and surgical oncology. Medical oncologists focus on using chemotherapy and other medications to treat cancer, while radiation oncologists use radiation therapy to destroy cancer cells. Surgical oncologists, on the other hand, perform surgeries to remove cancerous tumors. To become an oncologist, you will need to complete a medical degree, followed by a residency in oncology. Popular undergraduate programs for aspiring oncologists include biology, chemistry, and pre-med. In addition to formal education, oncologists must possess excellent communication and interpersonal skills, as well as a strong desire to help others. Job prospects for oncologists are excellent, with a growing demand for cancer care worldwide. There are many potential employers in both the public and private sectors, including hospitals, research institutions, and pharmaceutical companies. Notable employers include Memorial Sloan Kettering Cancer Center, MD Anderson Cancer Center, and the National Cancer Institute. In conclusion, a career in oncology is both challenging and rewarding. By pursuing this career, you would be making a significant impact on the lives of cancer patients and their families, while also contributing to the advancement of cancer research and treatment. So if you have a passion for helping others and a desire to make a difference in the world, consider a career in oncology.
An interdisciplinary UCLA research team has developed a tiny implantable device called SymphNode, which has been shown to be able to drive tumours into remission, eliminate metastasis, and prevent the growth of new tumours, resulting in longer survival in mice. This groundbreaking technology may decrease the risk of cancer returning, making it a potential addition to chemotherapy or other first-step treatments for a variety of cancers.
Have you ever wondered what it takes to be a heart doctor? Well, look no further because we've got the inside scoop on the exciting and rewarding field of cardiology! As a cardiologist, you'll be responsible for diagnosing and treating heart conditions, helping patients live longer, healthier lives. From heart attacks to arrhythmias, you'll have the knowledge and skills to provide life-saving care to those in need. But being a cardiologist isn't just about saving lives, it's also about preventing heart disease. You'll work with patients to develop healthy habits and manage risk factors, like high blood pressure and high cholesterol. And the best part? The field of cardiology is constantly evolving, with new treatments and technologies being developed all the time. You'll have the opportunity to stay at the forefront of medical advancements and make a real difference in the lives of your patients. Typical duties of a cardiologist include performing diagnostic tests, like electrocardiograms and echocardiograms, prescribing medication and lifestyle changes, and performing procedures like angioplasty and stenting. There are also many areas of specialisation within the field, such as electrophysiology and interventional cardiology. To become a cardiologist, you'll need to complete extensive education and training. This typically includes a bachelor's degree in a relevant field, such as biology or chemistry, followed by medical school and a residency in internal medicine. After that, you'll complete a fellowship in cardiology, where you'll gain specialised knowledge and skills. Helpful personal attributes for a career in cardiology include strong communication skills, attention to detail, and a passion for helping others. You'll also need to be able to work well under pressure and make quick decisions in life-or-death situations. Job prospects for cardiologists are excellent, with a growing demand for heart specialists around the world. Some notable potential employers include the Mayo Clinic, Cleveland Clinic, and Johns Hopkins Hospital, among many others. So, if you're looking for a challenging and rewarding career that allows you to make a real difference in the lives of others, consider becoming a cardiologist. Your heart (and your patients' hearts) will thank you!
Activities
Academic Extensions
Thought Experiments