Article
More like this
Ever heard of umami? It's the mystery taste that adds savouriness to your favorite foods and has been recognized as a basic taste along with sweet, sour, bitter, and salt. Join the Japanese chemist Kikunae Ikeda on his journey of isolating the key amino acid responsible for the taste and revolutionizing the food industry with his discovery.
Meditation has been shown to have numerous benefits for our physical and mental health, including stress relief, lowered blood pressure, and improved mood. Recent studies have also shown that meditation can rewire our neural circuits, strengthening the connections we exercise most and pruning away the least used ones. This can lead to increased synchronized communication between different regions of the brain, as well as an increase in the volume and density of the hippocampus, which is crucial for memory. Even just 12 to 20 minutes of meditation a day can sharpen the mind and improve attention and working memory. So if you're interested in improving your mental abilities and overall well-being, meditation is definitely worth exploring.
Our ears are as unique as our fingerprints, and they serve a crucial role in our lives. They help us communicate with others, recognize complex emotions, and locate sounds. Even before we are born, our ears are already listening, and after we are born, they become even more useful. The inner workings of the ear heighten the frequencies of the human voice, making listening a more effective way to recognize and decode complex human emotions than looking at facial expressions. Our external ears may not serve us well on a hot day, but they can be an indicator of our health. Moreover, the shape and folds of our ears, and how the brain processes sound waves, help us determine where a sound is coming from. Learning about the fascinating workings of our ears can help us appreciate their importance and how they benefit us intellectually and practically.
Umami, the savory essence found in a variety of foods, was only recently recognized as the fifth fundamental human taste. Scientists have now discovered how glutamate, the chemical responsible for umami taste, activates nerves on the tongue and how inosinate and guanylate can enhance its flavor. Learn how this "Venus flytrap" mechanism works and why a good Japanese broth contains both seaweed and dried fish flakes. Discover the truth behind MSG and why it's not as bad as some may think.
Do you ever wonder why orange juice tastes so bad after brushing your teeth? It turns out that our taste buds, which are made up of taste receptor cells, are responsible for identifying different tastes like sweet, bitter, and savory. Toothpaste contains Sodium Lauryl Sulphate (SLS), which creates foam while brushing and temporarily gets rid of the molecules that block our bitter receptors. This makes the receptor much more sensitive to bitter flavors, causing that awful taste. However, taste isn't just affected by our receptors. Temperature, texture, and smell can change what we sense too. Learning about the science of taste can help you understand why some foods taste the way they do and how to enhance your dining experience. So, next time you have OJ after brushing, try plugging your nose or go for a coffee or Bloody Mary instead.
Have you ever wondered why we crave certain foods more than others? It turns out that our brain's reward system is responsible for this. The orbital frontal cortex, a part of the brain that responds to different sensations and nutrients, is especially developed in humans and primates. This part of the brain is responsible for our cravings and delights in fat and sugar. However, having information about the food can make a big difference. We can use our knowledge of what is happening in our brains to design foods that are low in calories and still attractive, but healthy. Understanding how our reward neurons plot to get what they want can help us be aware of times that we tend to make poor choices. In the end, we are not fully at the mercy of our reward neurons. We can use our understanding to help design healthy foods and make healthy choices. By learning more about the science behind our food choices, we can make better decisions for our health and wellbeing.
Food is energy for the body, and the average number of calories in fat, protein, and carbohydrates is still used as an important marker for nutrition today. However, biologist Rob Dunn explains that there is no such thing as an average food or person. How many calories we extract from food depends on the biology of the species we are eating, how we cook and process our food, and even on the different bacterial communities in different people's guts. Standard calorie counts don't take any of these factors into consideration, resulting in numbers that are slightly inaccurate, at best, and sometimes rather misleading. Digestion turns out to be such a messy affair that we'll probably never have precise calorie counts for all the different foods we'd like to eat and prepare in so many different ways. However, learning about the biology of food and digestion can help us make better choices and understand our bodies better.
Silence is something that we all need in our lives, yet in today's world, it can feel like there's no space for it. Harriet Shawcross, a filmmaker and journalist, believes that we would all benefit from a little bit more silence in our lives. In her research, she has found that silence can have a positive impact on both the body and the brain. Studies have shown that silence can promote the growth of brain cells in the part of the brain responsible for memory. It can also lower blood pressure, reduce heart rate, and help us relax. Silence can even enable people to say things that they've never been able to say before. However, too much silence can be a bad thing, as it can lead to a feeling of torpor. Overall, silence is something that we should all strive to have more of in our lives, as it can have both intellectual and practical benefits.
Discover the scientist who uncovered the savory fifth taste, umami, and how it's related to the infamous MSG. Learn how umami has become a buzzword in the culinary world, inspiring chefs to create meaty flavors in meatless dishes.
Have you ever wondered how some people seem to effortlessly come up with creative ideas while others struggle to think outside the box? It turns out that there is a scientific explanation behind this phenomenon. The field of neuroscience has been studying the brain's creative processes, and the findings are fascinating. First, let's define creativity. It's not just about making art or music. Creativity is the ability to generate original and useful ideas. It involves thinking divergently, which means thinking beyond what is obvious and exploring many possible solutions to a problem. So, how does the brain generate creative ideas? One theory is that the brain has a default mode network, which is a set of brain regions that become active when the mind is at rest. This network allows the brain to make connections between seemingly unrelated ideas, leading to creative insights. Another theory is that creative thinking is linked to the prefrontal cortex, which is responsible for executive functions such as planning and decision-making. Studies have found that the prefrontal cortex is more active when people are engaged in creative thinking. In addition, research has shown that certain chemicals in the brain, such as dopamine and norepinephrine, play a role in creativity. These chemicals are released when the brain is in a state of arousal, such as during a challenging task or a new experience. Leading academics in the field of neuroscience of creativity include Dr. Rex Jung, who studies the brain basis of creativity and Dr. Mark Beeman, who focuses on insight and creative problem-solving. Innovations in the field include fMRI scans and EEGs, which allow researchers to see the brain in action during creative tasks. In conclusion, the science of creativity is an exciting and rapidly evolving field. By exploring this topic, you can not only improve your own creative abilities but also gain a deeper understanding of the human brain and what makes us unique as a species. So go ahead, unleash your creative brain!
Watson and Crick are often credited with discovering the structure of DNA, but it was the work of a host of talented scientists, including X-ray crystallographer Rosalind Franklin, that made it possible. Learn about the breakthrough that has led to world-changing advances in biological research and our understanding of inherited diseases. Explore the story of the discovery and the unsung heroes who made it happen.
Did you know that low concentrations of chloride can produce a sweet taste sensation? Scientists from Okayama University in Japan have discovered a new mechanism for detecting chloride ions in taste buds, shedding light on how we perceive taste. Using mice models and structural biology methods, they found that chloride ions activate sweet receptors, similar to other taste substances. This study could lead to a better understanding of taste perception in organisms.
Cells are the fundamental units of life, driven by the forces of the universe, and are impossible machines. They are biological robots that follow their programming, which has evolved over billions of years. Your cells are mostly filled with water molecules and proteins, which are the dead things that make life happen. Cells speak the language of life, which is made up of proteins that are formed from amino acids. Amino acids are the alphabet of the language of life, and proteins are the words that form sentences called biological pathways. The language of life is complex, and mindless cells speak it through DNA, which contains instructions, genes, and building manuals for all the proteins your cells need to function. Understanding the language of life can help you appreciate the amazing complexity of cells and their role in keeping you alive.
How do we grow seedless fruit? Discover the fascinating history and science behind hybridization and grafting, and the latest genetic research that could lead to new seedless varieties. From Navel oranges to mutant sugar apples, explore the world of fruit breeding.
A study of rockfish longevity has revealed a set of genes controlling their aging process, leading to the discovery of a previously unappreciated group of genes associated with extended lifespan in humans. The findings show that the same pathways that promote longevity in rockfish also promote longevity in humans. The study identified two major metabolic systems that regulate lifespan in rockfish: the insulin-signaling pathway, which prior research has shown plays a major role in regulating the lifespan of many different animals, and the previously unappreciated flavonoid metabolism pathway. These results provide insights into how to prevent or delay common human diseases of old age.
Have you ever wondered why some people are more adventurous than others? Geneticists are trying to figure out if certain genes can explain differences in behavior, like thrill-seeking, aggression, and nurturing. Research has shown that the genetics behind complex behavior is trickier than we first thought, and differences in behavior are not the result of one or a handful of genes. For example, the activity of 4,000 out of 15,000 genes in fruit flies determines how tough they will get with each other. If the genetics of behavior is that complicated in a fruit fly, imagine how complicated it would be for a human. Learning about the genetics of behavior can help us understand ourselves and others better, and it can also lead to practical applications in fields like medicine and psychology.
Can a single cell's physical properties predict how tall a tree can grow? MIT Professor Ming Guo's research in cell mechanics reveals how a cell's physical form can influence the growth of an entire organism, including disease such as cancer. With his interdisciplinary work in physics, mechanical engineering, and cell biology, Guo aims to engineer materials for biomedical applications.
Scientists have traced the origins of the Black Death, the deadliest pandemic in history, to Central Asia through the study of ancient Y. pestis genomes. The pandemic claimed up to 60% of the population in Europe, the Middle East, and northern Africa during the 14th century. The study's findings shed light on the pandemic's 500-year-long Second Plague Pandemic and its diversification event. The study highlights the importance of interdisciplinary collaboration among historians, archaeologists, and geneticists in resolving big mysteries of our past with unprecedented precision.
In just a few thousand years, northern Europeans evolved to digest milk, a feat that was once impossible for adult humans. Scientists now believe that exceptional stressors like famines and pathogens may have driven this genetic change, making the ability to digest milk extra valuable. This study, published in Nature and led by experts from the University of Bristol and University College London, sheds light on the evolution of lactose tolerance and rewrites the textbooks on why drinking milk was an advantage.
How did an animal like the octopus evolve from a shelled mollusk to a behaviorally sophisticated creature? Researchers from Harvard and UC San Diego discovered some clues, focusing on how cephalopod nervous systems adapt to sense their marine environments. They describe how the animals evolved using a family of chemotactile receptors within their arms and offer a glimpse into how such functional changes likely took place as adaptations to environment over deep evolutionary time.
Activities
Academic Extensions
Thought Experiments