Article
More like this
Do you ever wonder why orange juice tastes so bad after brushing your teeth? It turns out that our taste buds, which are made up of taste receptor cells, are responsible for identifying different tastes like sweet, bitter, and savory. Toothpaste contains Sodium Lauryl Sulphate (SLS), which creates foam while brushing and temporarily gets rid of the molecules that block our bitter receptors. This makes the receptor much more sensitive to bitter flavors, causing that awful taste. However, taste isn't just affected by our receptors. Temperature, texture, and smell can change what we sense too. Learning about the science of taste can help you understand why some foods taste the way they do and how to enhance your dining experience. So, next time you have OJ after brushing, try plugging your nose or go for a coffee or Bloody Mary instead.
Cells are the fundamental units of life, driven by the forces of the universe, and are impossible machines. They are biological robots that follow their programming, which has evolved over billions of years. Your cells are mostly filled with water molecules and proteins, which are the dead things that make life happen. Cells speak the language of life, which is made up of proteins that are formed from amino acids. Amino acids are the alphabet of the language of life, and proteins are the words that form sentences called biological pathways. The language of life is complex, and mindless cells speak it through DNA, which contains instructions, genes, and building manuals for all the proteins your cells need to function. Understanding the language of life can help you appreciate the amazing complexity of cells and their role in keeping you alive.
Discover the scientist who uncovered the savory fifth taste, umami, and how it's related to the infamous MSG. Learn how umami has become a buzzword in the culinary world, inspiring chefs to create meaty flavors in meatless dishes.
Ever heard of umami? It's the mystery taste that adds savouriness to your favorite foods and has been recognized as a basic taste along with sweet, sour, bitter, and salt. Join the Japanese chemist Kikunae Ikeda on his journey of isolating the key amino acid responsible for the taste and revolutionizing the food industry with his discovery.
Have you ever wondered why a black eye turns blue, then green, then yellow, and finally brown before disappearing? It's all because of your hemoglobin, the compound in red blood cells that brings oxygen to your body. When you get hit, the blow crushes tiny blood vessels called capillaries, and red blood cells ooze out of the broken capillaries into the surrounding tissue. From the outside of your skin, this mass of cells looks bluish-black, which is where we get the term, "black and blue". Learning about hemoglobin and how it works in your body can be fascinating and practical knowledge that can help you understand how your body works. It's an example of how exploring academic topics through reading, reflection, and writing can inspire you to learn more about the world around you.
Chemotherapy is a type of cancer treatment that uses drugs to kill rapidly dividing cancer cells in the body. The drugs are delivered through pills and injections and are toxic to all cells in the body, including healthy ones. However, cancer cells are more susceptible to the effects of chemotherapy because they multiply rapidly. Chemotherapy drugs can damage hair follicles, cells of the mouth, gastrointestinal lining, reproductive system, and bone marrow, which can cause side effects such as hair loss, fatigue, infertility, nausea, and vomiting. Despite these side effects, chemotherapy has greatly improved the outlook for many cancer patients. Advances in treatment have led to up to 95% survival rates for testicular cancer and 60% remission rates for acute myeloid leukemia. Researchers are still developing more precise interventions to target cancer cells while minimizing harm to healthy tissues. Learning about chemotherapy can help high school students understand the science behind cancer treatment and the importance of ongoing research to improve outcomes for patients.
Learning about the chemistry of onions may not seem like the most exciting academic topic, but it can help you understand how things work in the world around you. When you chop an onion, you're changing its chemistry and releasing a gas that causes your eyes to water. You can slow down the onion's enzymes by storing it in the fridge or boiling it briefly, or you can wear goggles or sunglasses while cutting it. Scientists are even working on creating tear-free onions through genetic modification and traditional plant breeding. Learning about the chemistry of onions can help you appreciate the complexities of the natural world and give you practical skills for your everyday life.
Tardigrades, also known as water bears, can survive extreme environments by entering a state of suspended animation and revitalizing decades later, and a UCLA chemist used this mechanism to develop a polymer called pTrMA that stabilizes drugs at high temperatures and over extended periods. This innovation could improve drug access, reduce waste, and save lives.
Have you ever wondered what happens to your blood after it's drawn at the doctor's office? Or how doctors diagnose illnesses and diseases? Enter the world of Medical Laboratory Science, where the magic happens behind the scenes. As a Medical Laboratory Scientist, your role is crucial in the healthcare industry. You'll use advanced laboratory techniques and equipment to analyze patient samples, such as blood, tissue, and bodily fluids, to help diagnose and treat diseases. You'll work with a team of healthcare professionals, including doctors and nurses, to provide accurate and timely results that inform patient care. But what makes this career so appealing? For starters, it's a constantly evolving field. With new technologies and discoveries, you'll always be learning and adapting to stay at the forefront of your profession. Plus, you'll have the satisfaction of knowing that your work directly impacts patient outcomes and helps save lives. In terms of duties, Medical Laboratory Scientists can specialize in a variety of areas, such as microbiology, hematology, or immunology. You may also work in related fields, such as research or public health. Typical tasks include analyzing samples, interpreting results, and communicating findings to healthcare providers. To become a Medical Laboratory Scientist, you'll need at least a Bachelor's degree in Medical Laboratory Science or a related field. Popular undergraduate programs include Biology, Chemistry, and Medical Technology. You'll also need to complete a clinical rotation and pass a certification exam. Helpful personal attributes for this career include attention to detail, critical thinking skills, and the ability to work well under pressure. You'll also need strong communication skills to effectively communicate with healthcare providers and patients. Job prospects for Medical Laboratory Scientists are strong, with a projected growth rate of 11% from 2018 to 2028. You can find job opportunities in a variety of settings, including hospitals, clinics, research labs, and government agencies. Notable employers include Mayo Clinic, Quest Diagnostics, and the Centers for Disease Control and Prevention. So if you're interested in a career that combines science, technology, and healthcare, consider exploring the world of Medical Laboratory Science. Who knows - you could be the next person to discover a life-saving breakthrough!
Silphion, a golden-flowered plant once prized by the Greeks and Romans for its medicinal and culinary uses, disappeared from the ancient world. But a professor in Turkey may have rediscovered the last holdouts of the plant, which was once valued as highly as gold. Ferula drudeana, a plant with similar characteristics, may be the modern-day version of silphion, with potential for medical breakthroughs. Explore the fascinating story of a plant that was the first recorded extinction and the search for its rediscovery.
In just a few thousand years, northern Europeans evolved to digest milk, a feat that was once impossible for adult humans. Scientists now believe that exceptional stressors like famines and pathogens may have driven this genetic change, making the ability to digest milk extra valuable. This study, published in Nature and led by experts from the University of Bristol and University College London, sheds light on the evolution of lactose tolerance and rewrites the textbooks on why drinking milk was an advantage.
Umami, the savory essence found in a variety of foods, was only recently recognized as the fifth fundamental human taste. Scientists have now discovered how glutamate, the chemical responsible for umami taste, activates nerves on the tongue and how inosinate and guanylate can enhance its flavor. Learn how this "Venus flytrap" mechanism works and why a good Japanese broth contains both seaweed and dried fish flakes. Discover the truth behind MSG and why it's not as bad as some may think.
Have you ever wondered what it would be like to hibernate like a bear? Well, what if we told you that human hibernation could be the key to long-distance space travel? In this fascinating article from BBC, explore the possibility of astronauts hibernating on their way to Mars, and the benefits it could have on their physical and mental health, as well as the overall mission. Discover how animals like bears and squirrels have already shown resistance to the harmful effects of space travel through hibernation, and how scientists are exploring ways to induce a torpor-like state in humans. Don't miss out on this intriguing read!
Singapore's national flower, Papilionanthe Miss Joaquim, has had its entire genetic blueprint decoded, revealing natural products with antioxidant properties and distinctive colors. The study, published in Communications Biology, could lead to future research in gene and metabolite engineering, as well as the discovery of bioactive compounds for healthcare purposes. The collaboration between A\*STAR's Genome Institute of Singapore and SingHealth Duke-NUS Institute of Biodiversity Medicine showcases the power of genetic sequencing technology in preserving and studying Singapore's plant biodiversity.
The world of science is constantly evolving, and with it comes new discoveries that can benefit humanity. However, there are also risks associated with scientific research, particularly in the field of biotechnology. Gain of function work involves manipulating the DNA of microorganisms to give them new abilities, which can be used in vaccine production and cancer treatments. However, this work also includes engineering superbugs that could cause a global pandemic if they escape from the lab. While virologists argue that this research could help us prepare for future pandemics, critics believe that the risks outweigh the benefits. To minimize the risk of lab leaks, experts suggest creating international databases of leaks, near-misses, and fixes, as well as developing a robust pandemic early warning system. As students, it is important to understand the benefits and risks of scientific research and to be aware of the measures being taken to minimize the risks associated with it.
Are you curious about the secrets hidden in ancient DNA? Harvard University has made a groundbreaking discovery that could change the way we understand life on earth. Scientists have managed to reconstruct the genomes of microorganisms up to 100,000 years old, and even revived molecules from the Stone Age in the lab. The group’s findings and genome-reconstruction techniques are outlined in a paper published in Science. This is an exciting breakthrough that could lead to the discovery of new oral species and biochemicals with therapeutic potential. Don't miss out on this fascinating article!
Are you curious about the tiny viruses that inhabit your body? MIT Technology Review's biotech newsletter, The Checkup, explores the world of bacteriophages, or "phages" for short. These microscopic viruses have the potential to treat bacterial infections, but they've been largely abandoned in favor of antibiotics. With antimicrobial resistance on the rise, interest in phage therapy is making a comeback. Learn about the diversity and specificity of phages, and how they could be engineered to target specific bacteria. Discover the potential of phage therapy and the challenges that need to be overcome in this fascinating article.
Ancient Egyptian tombs reveal pots of honey, thousands of years old and still preserved. What makes honey such a special food? The answer lies in its chemical makeup and the alchemy of bees. Honey's longevity and acidic properties lend it medicinal qualities, making it a natural bandage and a barrier against infection for wounds. Discover the magic of honey and its perfect balance of hygroscopic and antimicrobial properties.
The discovery of the structure of DNA is one of the most important scientific achievements in human history. While Watson and Crick are often credited with this breakthrough, Rosalind Franklin's scientific contributions have been vastly underplayed. Franklin faced sexism and isolation from her colleagues, but she kept working and obtained Photo 51, the most famous x-ray image of DNA. Her calculations led her to the same conclusion as Watson and Crick, but her manuscript was published last, making it look like her experiments just confirmed their breakthrough instead of inspiring it. Franklin's work revolutionized medicine, biology, and agriculture. Learning about her story will not only provide insight into the history of science but also inspire students to pursue their passions regardless of societal barriers.
Are you interested in science and making a difference in people's lives? A career in pharmaceutical research might be just what you're looking for! Pharmaceutical research is an exciting field that involves discovering and developing new drugs and therapies to treat and cure diseases. As a pharmaceutical researcher, you will have the opportunity to work on cutting-edge research projects that could change the lives of millions of people. For example, did you know that the development of the COVID-19 vaccines is a result of years of pharmaceutical research? You could be part of the next breakthrough in medicine! In this field, your typical duties will include conducting laboratory experiments, analyzing data, developing new drugs, and testing their safety and effectiveness. You may also specialize in a particular area, such as drug design, pharmacology, or clinical research. To become a pharmaceutical researcher, you will need to pursue a degree in a relevant field, such as chemistry, biology, or pharmacology. Popular undergraduate programs and majors include Biochemistry, Pharmaceutical Sciences, and Medicinal Chemistry. A graduate degree in pharmaceutical research is also highly desirable and may be required for some positions. Helpful personal attributes for this field include strong critical thinking skills, attention to detail, and excellent communication skills. A passion for science and a desire to make a difference in the world are also important. The job prospects for pharmaceutical researchers are promising. With the aging population and increasing demand for new drugs and therapies, the demand for skilled researchers is expected to grow. Notable and attractive potential employers in this field include pharmaceutical companies such as Pfizer, Merck, and Novartis, as well as government agencies such as the National Institutes of Health (NIH) and the Food and Drug Administration (FDA).
Activities
Academic Extensions
Thought Experiments