Article
More like this
Concrete is the most widely used construction material in the world, but it has a weakness: it's prone to catastrophic cracking that costs billions of dollars to repair each year. However, scientists have discovered ways to create concrete that can heal itself. By adding hidden glue or bacteria and fungi spores to the concrete mix, cracks can be repaired up to almost 1mm wide. This technique has the potential to make concrete more resilient and long-lasting, which could drastically reduce the financial and environmental cost of concrete production. Learning about the science behind concrete and its potential for self-healing can not only be intellectually stimulating but also practically beneficial for the future of construction. Imagine being part of the solution to creating more sustainable and durable infrastructure for our cities.
Did you know that almost everything around you is being eaten by tiny organisms called microbes? These hordes of bacteria, archaea, and fungi have evolved to break down tough organic material into digestible nutrients. However, there is one material that almost no microbes can biodegrade: plastics. This is because most plastics have only been around since the 1950s, so most microbes haven't had time to evolve enzymes to digest them. As a result, plastics just turn into countless, tiny, indigestible pieces that pollute the environment. However, researchers have discovered microbes that may be able to take a bite out of this growing problem, creating super-enzymes that could break down plastics faster. By exploring the science behind microbes and biodegradability, you can learn how to become part of the solution to this global issue. Not only will you expand your knowledge, but you will also contribute to creating a cleaner, healthier planet.
As the world faces increasingly urgent environmental challenges, there is a growing need for sustainable solutions across all industries, including healthcare. Biodegradable implants are one such solution, with the potential to revolutionize the medical field while minimizing its environmental impact. Unlike traditional implants made from non-biodegradable materials, such as metal or plastic, biodegradable implants are designed to break down over time, leaving no harmful residue behind. This means they not only benefit the patient, but also the environment. One area where biodegradable implants are particularly promising is in orthopedic surgery. According to a study published in the Journal of Orthopaedic Research, biodegradable implants made from natural materials such as collagen and silk have shown promise in promoting bone growth and healing. Leading academics in the field include Dr. Jennifer Elisseeff, a professor of biomedical engineering at Johns Hopkins University, whose research has focused on developing biodegradable scaffolds for tissue engineering, and Dr. Lisa E. Freed, a professor of materials science and engineering at the University of California, Berkeley, who has worked on developing biodegradable implants for orthopedic applications. But the potential of biodegradable implants extends beyond orthopedics. They can also be used in drug delivery, wound healing, and other areas of medicine. In fact, researchers at the University of Cambridge are currently developing biodegradable implants for use in cancer treatment. As promising as biodegradable implants are, they are not without their challenges. For example, they must be designed to break down at just the right rate, neither too quickly nor too slowly, in order to ensure optimal healing. But with continued research and development, biodegradable implants have the potential to transform the medical field for the better.
As a society, we rely heavily on oil, but this addiction has led to environmental disasters like oil spills. However, nature has a way of cleaning up after us. Microbes, tiny bacteria that evolved to take advantage of oil and gas seeping from the sea floor, have been eating up oil spills for eons. In fact, a big bloom of microbes ate most of the 4.1 million barrels of oil spilt by BP's Macondo well in the Gulf of Mexico. These microbes are not only oil-eaters, but they also eat plastics, making them a potential solution to the Great Pacific Garbage Patch. Scientists are working on enhancing microbes' ability to eat oil and plastic, which could help us clean up our messes faster. Learning about these microbes and how they can benefit us is not only intellectually stimulating, but it also has practical implications for our planet's health.
Plastics are everywhere, and most of them never biologically degrade. This is a major problem for our environment, as plastic waste pollutes natural ecosystems for centuries. Fortunately, there are microbes that may be able to help us solve this growing problem. Scientists have discovered bacteria, also known as plastivores, that contain enzymes capable of breaking down PET polymers, a common type of plastic. However, we still need ways to biologically degrade all the other types of plastic, including abundant PEs and PPs. Researchers are looking for more heat-tolerant plastivores in the planet's most hostile environments and engineering better plastivorous enzymes in the lab. As students, you have the opportunity to learn about this important issue and contribute to finding solutions. By exploring the science behind plastic degradation, you can gain a deeper understanding of how to protect our environment and create a more sustainable future.
Clean water is an essential resource for all life on Earth, and the pursuit of ensuring access to clean water has been a focus of research, policy, and advocacy for decades. In this write-up, we'll explore the history of clean water, the challenges we face, and the progress we've made over time. One of the earliest recorded efforts to ensure clean water was by the ancient Greeks, who built the first aqueducts to transport water to their cities. Fast forward to the present day, and the challenge of ensuring access to clean water remains a pressing issue, with over two billion people lacking access to safe drinking water worldwide. The field of water resources engineering has emerged to address this challenge, with experts working on solutions such as desalination, water treatment, and conservation. One leading academic in this field is Dr. Rita Colwell, who has dedicated her career to researching and preventing waterborne diseases, including cholera. Another key concept in the pursuit of clean water is sustainability, which refers to using resources in a way that meets the needs of the present without compromising the ability of future generations to meet their own needs. This requires balancing economic, environmental, and social factors to ensure that our water resources are managed in a way that is equitable and efficient. One leading scholar in this area is Dr. Peter Gleick, who founded the Pacific Institute, a research organization that focuses on water issues. Despite the ongoing challenges, progress has been made in the field of clean water. For example, the percentage of the global population with access to clean drinking water has increased from 76% in 1990 to 91% in 2015. Additionally, advances in technology and infrastructure have allowed for improved water treatment and distribution, as well as the development of new methods of water conservation. Remember, the pursuit of knowledge is a lifelong journey, and there's always more to discover and learn. By exploring academic topics like clean water, you can broaden your understanding of the world, develop critical thinking skills, and make a positive impact on the world around you.
Scientists have developed a simple and low-cost method to break down almost a dozen types of "forever chemicals" known as PFAS, which have contaminated virtually every drop of water on the planet and are associated with certain cancers and thyroid diseases. By using a chemical guillotine and common solvents and reagents, they severed the molecular bonds in PFAS, gradually nibbling away at the molecule until it was gone, leaving behind only safe byproducts. This breakthrough could eventually make it easier for water treatment plants to remove PFAS from drinking water.
Do you feel a deep connection with the sea and its inhabitants? Do you find yourself daydreaming about what lies beneath the ocean's surface? If so, a career in oceanography might be perfect for you! As an oceanographer, you'll be studying the ocean, its physical and biological properties, and how it interacts with the planet. You'll work to understand everything from the temperature and salinity of the water, to the movement of currents, the behavior of marine life, and how humans impact the ocean. One of the most appealing aspects of a career in oceanography is the opportunity to work on important environmental issues. For example, you could study how climate change is impacting the ocean and marine life, work to protect endangered species, or research ways to develop sustainable fishing practices. There are also countless fascinating and inspiring examples of real-life oceanographers making a difference. For instance, Sylvia Earle is a marine biologist and explorer who has led more than 100 deep sea expeditions and been instrumental in the creation of marine protected areas. Jacques Cousteau, an oceanographer and explorer, was a pioneer in underwater filmmaking and worked to raise awareness about ocean conservation. As an oceanographer, you'll typically be conducting research and collecting data, analyzing samples in a laboratory setting, and communicating your findings to colleagues, stakeholders, and the public. You could choose to specialize in one of several areas, including biological oceanography, chemical oceanography, physical oceanography, or marine geology. There are also related fields like marine biology, marine ecology, and ocean engineering. To become an oceanographer, you'll typically need at least a bachelor's degree in a relevant field, such as marine biology, oceanography, or environmental science. Many universities offer specialized programs, such as the Marine Science program at the University of Miami or the Oceanography program at the University of Washington. Additionally, internships and field experience can be highly beneficial for gaining practical skills and connections in the field. Helpful personal attributes for an oceanographer include a passion for the ocean and its inhabitants, strong analytical skills, and a willingness to work in a team environment. Additionally, it's important to have good communication skills, as you'll be communicating complex scientific concepts to a variety of audiences. The job prospects for oceanographers are good, with an expected job growth of 7% from 2020 to 2030. There are many potential employers in both the public and private sectors, including government agencies like NOAA (the National Oceanic and Atmospheric Administration) and private companies like Shell or ExxonMobil. You could also work for non-profits like the Ocean Conservancy or research institutions like Woods Hole Oceanographic Institution.
The search for alien life in the universe is an intriguing quest that has captivated the attention of many. The possibility of life existing in various forms and how it could have developed is a topic that continues to spark curiosity. Scientists have been working on a theory of panspermia, which suggests that life exists throughout the universe and can be transported through space from one location to another. Microorganisms, such as archaea and bacteria, have been able to modify themselves to adapt to a vast range of conditions, making them incredibly adaptable. These extremophiles can survive in the most extreme conditions that Earth has to offer, making them the most oven-ready organisms to survive and potentially colonize the hostile environments of other planets and moons. Learning about these academic concepts not only expands our knowledge of the universe but also allows us to understand the adaptability of life and its possibilities.
Oxybenzone in sunscreens is disrupting coral reefs, leading to international bans. Scientists are now exploring eco-friendly alternatives like mycosporine-like amino acids (MAAs) found in ocean organisms that offer potent UV-absorbing shields, antioxidants, and anti-inflammatory properties. However, regulatory hurdles and environmental concerns remain. Discover the latest research and innovations in the search for safer and more effective sunscreens.
Can a single cell's physical properties predict how tall a tree can grow? MIT Professor Ming Guo's research in cell mechanics reveals how a cell's physical form can influence the growth of an entire organism, including disease such as cancer. With his interdisciplinary work in physics, mechanical engineering, and cell biology, Guo aims to engineer materials for biomedical applications.
Have you ever wandered through a forest and wondered about the secrets that lie within? The Hidden Life of Trees by Peter Wohlleben is a fascinating exploration of the communication and community that exists within forests. Wohlleben shares his love for the woods and explains the incredible processes of life, death, and regeneration that take place in the woodland. Through groundbreaking discoveries, he reveals the previously unknown life of trees and their communication abilities. Discover how trees live together with their children, share nutrients, and create an ecosystem that benefits the whole group. Recommended for environmentalists, biologists, ecologists, and anyone interested in the natural world. The Hidden Life of Trees provides a unique perspective on the life and communication of trees, revealing the intricate processes of the forest ecosystem. It offers insights into the importance of community and the impact of solitary life on trees, which can also be applied to human society. This book is relevant to those interested in environmental sustainability and the impact of eco-friendly practices on the health of our planet. It is also a fascinating read for those who simply appreciate the beauty and complexity of the natural world.
A Kanpur-based start-up, Phool, is developing a sustainable alternative to animal leather called Fleather. Made from floral waste generated in temples across India, this plant-based material is part of an emerging trend of companies producing leather alternatives to disrupt the traditional leather industry. Producing leather from animals poses several environmental hazards, but Fleather is energy-efficient and eco-friendly. Discover how Phool is using innovative microbial technology to create a delicate and smooth material that could help make India's rivers a bit cleaner.
Calcium carbonate may sound like just another chemical compound, but it’s actually the building block for some of the most exquisite and diverse structures found in the ocean, from pearls to shells to coral. Creatures like mollusks use calcium carbonate to carefully construct their shells, controlling their composition at the molecular level to achieve stunning colors and patterns. Learning about the artful ways in which these creatures use calcium carbonate to create their protective structures not only expands our understanding of the natural world but also teaches us about the importance of adaptation and resilience. By exploring this topic further, you can develop a deeper appreciation for the intricacies of the natural world and the ways in which organisms have evolved to survive and thrive in their environments.
The universe began with the Big Bang 13.8 billion years ago, and gradually, more complex things appeared. Our Sun and solar system appeared about 4.5 billion years ago, and by 4 billion years ago, life had emerged on Earth. Humans evolved just about 200,000 years ago, and they have become the dominant species on Earth. The future of the oceans, climate, and most other species on Earth, including our own descendants, depends on what humans do in the next few decades. We are at a turning point in history, and we must either lead the biosphere towards a flourishing future or to catastrophe. The good news is that we understand the science, and we have many of the technologies needed to build a sustainable future. The challenge now is the political technology. Governments and peoples must collaborate to avoid the many dangers we face today. Learning about the universe, the history of life on Earth, and the challenges we face today can help us understand the importance of collaboration and inspire us to take action towards a prosperous future.
Discover the secrets behind the remarkable hydrodynamic performance of shark skin and how it's inspiring the design of bioinspired robots and materials!
Are you aware that over 2 billion people globally drink water contaminated with disease-causing microbes? Stanford University and SLAC National Accelerator Laboratory have developed a low-cost, recyclable powder that can kill thousands of waterborne bacteria per second when exposed to ordinary sunlight. This discovery could be a significant breakthrough for the nearly 30 percent of the world's population without access to safe drinking water. The results of their study are published in Nature Water.
In a world drowning in plastic waste, a new trend of "zero-waste" supermarkets is taking hold. Live Zero, a Hong Kong-based store, is leading the way by doing away with packaging altogether. From bulk bins of chocolate and dried fruit to solid shampoo bars, customers bring their own containers to fill up on just what they need. Although it presents challenges, this movement is gaining momentum, and could pave the way for new eco-friendly solutions, such as compostable bioplastics and reusable packaging systems. Zero-waste shopping may not replace traditional supermarkets, but it offers a promising path forward in the fight against plastic pollution.
Fungi are more than just pizza toppings or irritants like athlete's foot. They are a distinct life-form that plays a vital role in the health of our planet. Fungi can absorb oil spills, control insects' brains, and produce life-saving medicines like penicillin. They are also eco-warriors, essential to healthy soil and trapping CO2, potentially solving global warming on their own. Fungi are neither plant nor animal, but are genetically closer to animals than plants. They form dense fungal networks called mycelium, which plants use to communicate with each other. Fungi can also employ other organisms, like leaf-cutter ants, to do their work for them. Fungi are fascinating and adaptable, and there is still much we have yet to learn about them. By exploring the world of fungi, you can become a real fun-guy at parties and gain a deeper understanding of the world around you.
Did you know that bioreactor technology is revolutionizing the way we grow nutritious plants? Bioreactors are closed systems that use microorganisms, plant cells, or animal cells to produce a wide range of products, including food, drugs, and biofuels. With bioreactors, we can grow plants in a controlled environment, without the use of pesticides or fertilizers, and harvest them year-round. One of the most exciting applications of bioreactor technology is the cultivation of superfoods. These are foods that are nutrient-dense and have a host of health benefits, such as kale, spinach, and broccoli. By growing these plants in bioreactors, we can increase their nutritional content and make them more widely available. One example of this is how researchers at Flinders University's Centre for Marine Bioproducts Development are using bioreactors to cultivate marine microalgae, which can be turned via advanced cultivation strategies into various proteins. Cultivating microalgae is more eco-friendly than rearing animals, and may be a way to reduce the need for meat proteins, thus helping to save the environment. Another example is the use of plant cell cultures in bioreactors to produce plant-based meat alternatives. Mark Post, a pharmacologist and professor at Maastricht University in the Netherlands, has developed a process for growing "cultured meat", where animal cells are cultivated in vitro. This technology could revolutionize the meat industry, reducing the environmental impact of animal agriculture and improving animal welfare. But bioreactor technology isn't just for growing food. It's also being used to produce drugs, such as insulin, and to clean up pollution. In fact, another crucial form of bioreactor technology is bioremediation, which is the use of microorganisms to break down environmental contaminants. The future of bioreactor technology is exciting! Aside from its current uses, ongoing research probes at the possibility of bioreactors being used in cell therapy - growing healthy cells to replace diseased or damaged ones in patients. The possibilities are vast, so let's go ahead and dive into the exciting world of bioreactor technology!