Article
More like this
Bacteria, once thought of as harmful, have been found to have the potential to fight cancer. Synthetic biologists have discovered a way to program bacteria to safely deliver drugs directly to tumors. Unlike traditional treatments, bacteria can selectively grow inside tumors, avoiding healthy tissues. By manipulating their DNA, bacteria can be instructed to synthesize different molecules, including those that disrupt cancer growth. With the help of biological circuits, bacteria can be programmed to sense specific conditions and respond to tumors while avoiding healthy tissue. This approach has proven promising in scientific trials using mice, and it also stimulates the immune system, priming it to attack untreated tumors. Bacteria can also serve as sophisticated sensors, monitoring sites for future disease. Advances in technology and synthetic biology have created excitement around a future of personalized medicine driven by bacteria.
Discover how Louis Pasteur's research led to innovations in beer and wine making, the germ theory, and the development of the rabies vaccine. Learn how his method of pasteurization is still used today to prevent spoilage in perishable liquids.
Revolutionize cancer treatment with a new approach - turning cancer cells into cancer-killing vaccines! Researchers at Brigham and Women's Hospital and Harvard-affiliate are developing a cell therapy that eliminates tumours and trains the immune system to prevent future cancer outbreaks.
Unlock the secrets of Alzheimer's disease with single-cell profiling! MIT scientists have made rapid progress in understanding Alzheimer's disease by using single-cell profiling technologies. By analyzing genetic activity in individual cells, they have identified five main areas of cellular function, or "pathways," that are disrupted in the disease. These findings hold strong potential for explaining the disease and developing meaningful therapies.
A groundbreaking study from Weill Cornell Medicine has identified four distinct subtypes of autism based on brain activity and behavior. Machine learning was used to analyze neuroimaging data from 299 people with autism and 907 neurotypical individuals, revealing patterns of brain connections linked to behavioral traits. The study shows promise for personalized therapies and new approaches to diagnosis and treatment.
Cancer is a disease that affects millions of people worldwide and has been a subject of intense research for decades. Thanks to recent advances in cancer treatment, survival rates are on the rise, and more and more people are able to beat the disease. One of the key developments in cancer treatment has been the use of immunotherapy. This approach harnesses the power of the patient's own immune system to fight cancer cells. For example, the drug Keytruda, which was developed by three developers -- Hans van Eenennaam, John Dulos and Andrea van Elsas -- has been shown to be effective in treating several types of cancer, including melanoma and non-small cell lung cancer. Another exciting development in cancer treatment is the use of precision medicine. This approach uses genetic information to tailor treatments to individual patients, increasing their effectiveness and reducing side effects. For example, the drug Gleevec, which was developed by Dr. Brian Druker, has revolutionized the treatment of certain types of cancer (such as acute lymphoblastic leukaemia, chronic myeloid leukaemia, gastrointestinal stromal tumours, and myelodysplastic/myeloproliferative diseases), leading to high cure rates in patients with this disease. Additionally, advances in radiation therapy have also played a major role in the fight against cancer. Today, more precise and targeted radiation treatments are available, reducing side effects and improving outcomes for patients. For example, proton therapy, which was developed by Elekta, uses beams of protons to precisely target cancer cells, minimizing damage to healthy tissue.
For decades, the mechanism of anesthesia has been a mystery. But thanks to Professor Emery Brown and his team, anesthesia is now being used as a powerful tool to study the human brain. By modulating brain chemistry, they hope to uncover new insights into depression, insomnia, epilepsy, Alzheimer's disease, and even the mystery of consciousness itself. Anesthesia is not just for surgery anymore.
Medical research is a fascinating field of study that explores the complexities of the human body and its many diseases. It's an exciting area of research that is constantly evolving, with new discoveries and innovations being made every day. One of the most appealing aspects of medical research is the potential to make a real difference in people's lives. Researchers in this field are at the forefront of developing new treatments and therapies for a wide range of illnesses, from cancer to Alzheimer's disease. One example of groundbreaking research in this field is the development of immunotherapy, a treatment that harnesses the power of the immune system to fight cancer. This innovative approach has already helped to save countless lives and is just one example of the many exciting breakthroughs being made in medical research. At the undergraduate level, students can expect to take a variety of modules that cover topics such as genetics, molecular biology, and epidemiology. These modules provide a solid foundation in the basic principles of medical research and prepare students for further specialisation in areas such as cancer research or infectious diseases. Potential future jobs and roles in medical research include positions as research scientists, clinical trial coordinators, and medical writers. There are also many opportunities to work in public health or in the pharmaceutical industry, with notable employers including the National Institutes of Health, Pfizer, and GlaxoSmithKline. To succeed in this field of study, students should have a strong interest in science and a passion for helping others. They should also possess excellent analytical and critical thinking skills, as well as the ability to work independently and as part of a team. Overall, the study of medical research is an exciting and rewarding field that offers endless possibilities for those who are passionate about making a difference in the world of healthcare.
Alzheimer's disease is a debilitating and progressive brain disorder that affects millions of people worldwide. It is a leading cause of dementia, which causes memory loss, difficulty in thinking, and other cognitive and behavioral problems. This write-up aims to provide high school students with a comprehensive overview of Alzheimer's, its global challenges, and innovations that can help us better understand and manage this disease. Alzheimer's disease affects approximately 50 million people worldwide, and this number is projected to triple by 2050. It is a significant health challenge that not only affects individuals but also their families and caregivers. Alzheimer's can lead to a reduced quality of life, an increased risk of mortality, and significant healthcare costs. However, innovative research is helping to unlock the mysteries of this disease, leading to promising treatments and interventions. One of the most exciting innovations in Alzheimer's research is the use of artificial intelligence and machine learning. These technologies can help identify individuals at high risk for Alzheimer's disease, predict disease progression, and develop personalized treatments. Researchers are also exploring the use of stem cells, gene editing, and immunotherapy to treat Alzheimer's disease. Many prominent researchers and academics have contributed significantly to Alzheimer's research. For example, Dr. Atri is a leading expert in the field of cognitive and memory disorders. His research focuses on identifying cognitive and biomarker changes that predict Alzheimer's disease progression. Dr. Bredesen is another prominent researcher who has developed a comprehensive program to prevent and reverse cognitive decline. Alzheimer's disease is a complex and challenging topic, but with innovative research and a commitment to learning, we can better understand and manage this disease. By exploring academic topics related to Alzheimer's, high school students can gain valuable knowledge and make a meaningful impact on this important issue.
Artificial Intelligence (AI) is transforming the healthcare industry in ways we never imagined. AI has the potential to revolutionize the way we diagnose, treat, and prevent diseases. With the help of AI, medical professionals can now analyze large amounts of data in seconds, making the process of diagnosing and treating patients much more efficient. Leading academics such as Dr. Eric Topol, a cardiologist and digital health pioneer, have been working on incorporating AI into healthcare for years. For example, Dr. Topol has been working on developing AI algorithms that can help diagnose diseases from scans and images, reducing the need for invasive procedures. He has also been studying the use of AI in personalized medicine, where AI can help predict the best treatment for a patient based on their specific genetic makeup. Statistics show that AI is already having a positive impact on healthcare. In 2019, researchers used AI to diagnose skin cancer with accuracy comparable to human dermatologists. Another study found that AI could help detect breast cancer up to five years before a traditional mammogram. These are just a few examples of how AI is changing the face of healthcare. AI is also helping healthcare professionals work more efficiently. For example, AI algorithms can quickly analyze medical records and help doctors identify patients who need immediate attention. This saves time and reduces the risk of missing critical information.
Do you have a passion for science, medicine, and technology? Are you interested in exploring the cutting-edge world of biotechnology research? If so, then a career in biotechnology research may be just what you're looking for. Biotechnology research is a field that combines biology and technology to develop new products and processes that improve human health, agriculture, and the environment. This field has the potential to make a huge impact on the world, with applications in everything from gene therapy and personalized medicine to renewable energy and sustainable agriculture. As a biotechnology researcher, you would be responsible for conducting experiments and analyzing data to help develop new biotech products and processes. You might work in a lab, testing new drugs or studying the genetics of a particular disease. You could also work in a manufacturing setting, helping to develop new techniques for producing biofuels or other renewable resources. One exciting example of the impact of biotechnology research is the development of mRNA vaccines, which are currently being used to combat COVID-19. Researchers in this field have also made progress in developing gene therapies for conditions such as cystic fibrosis, sickle cell anemia, and certain types of cancer. There are many potential areas of specialization within biotechnology research, including genetics, microbiology, biochemistry, and molecular biology. You could also choose to focus on specific applications, such as developing new medical treatments, improving agricultural yields, or creating sustainable biofuels. To pursue a career in biotechnology research, you typically need a strong foundation in science and mathematics. Most entry-level positions require at least a bachelor's degree in a relevant field, such as biology, chemistry, or bioengineering. Popular undergraduate programs and majors include Biomedical Engineering, Biology, Biochemistry, and Molecular Biology. In addition to a strong academic background, successful biotechnology researchers typically possess certain personal attributes. These might include a curiosity and passion for science, critical thinking and problem-solving skills, creativity, and the ability to work well in a team. The job prospects for biotechnology researchers are excellent, with strong demand expected to continue in the coming years. There are a wide range of potential employers in both the public and private sectors, including pharmaceutical companies, biotech startups, government agencies, and research institutions. Some notable employers in this field include Pfizer, Moderna, Novartis, and the National Institutes of Health.
Severe stress triggers biological age to increase, but it can be reversed. Surgery, pregnancy, and COVID-19 are studied in humans and mice. Researchers found that biological age increased in situations of severe physiological stress but was restored when the stressful situation resolved. This study challenges the concept that biological age can only increase over a person’s lifetime and suggests that it may be possible to identify interventions that could slow or even partially reverse biological age.
Get ready to revolutionize the way we treat cancer and age-related diseases! A new company, GlioQuell, co-founded by Dr. Kambiz Alavian from the Department of Brain Sciences, is developing a cutting-edge approach to target the powerhouses of cancer cells - the mitochondria. By reducing the efficiency of these structures, GlioQuell aims to turn off the cancer cells' energy supply and treat one of the most aggressive forms of cancer - glioblastoma.
Have you ever been curious about what goes on inside the human body? Do you have a passion for helping others and a desire to work in the healthcare industry? If so, a career as a Sonographer might be the perfect fit for you! As a Sonographer, you will be responsible for using high-frequency sound waves to create images of organs, tissues, and blood flow within the body. This non-invasive imaging technique is used to diagnose and treat a wide range of medical conditions, from pregnancy to cancer. One of the most appealing aspects of this career is the opportunity to make a meaningful impact on the lives of others. By providing accurate and detailed images, Sonographers play a crucial role in helping doctors and other healthcare professionals make informed decisions about patient care. In addition to the rewarding nature of the work, Sonographers also enjoy a diverse range of duties and specializations. Some Sonographers specialize in obstetrics and gynecology, working closely with expectant mothers to monitor the health and development of their babies. Others work in cardiovascular imaging, using ultrasound to diagnose and treat conditions such as heart disease. To become a Sonographer, you will need to complete a specialized training program, typically at the associate or bachelor's degree level. Popular undergraduate programs for aspiring Sonographers include Diagnostic Medical Sonography, Radiologic Technology, and Cardiovascular Technology. In addition to formal education, Sonographers should possess a number of helpful personal attributes, including strong communication skills, attention to detail, and the ability to work well under pressure. Job prospects for Sonographers are strong, with employment opportunities available in a variety of settings, including hospitals, clinics, and private practices. Notable employers in this field include the Mayo Clinic, Cleveland Clinic, and Johns Hopkins Hospital. So, if you're looking for a career that combines your passion for healthcare with cutting-edge technology and the opportunity to make a real difference in the lives of others, consider becoming a Sonographer!
Are you fascinated by the human body and its inner workings? Do you have a passion for helping others and making a meaningful impact on people's lives? Then a career in Medicine might be just what you're looking for! Medicine is a field of study that encompasses everything from the smallest cells to the largest organ systems, with a focus on understanding and treating diseases and injuries. It's a challenging and rewarding career that requires a lot of hard work and dedication, but the potential rewards are enormous. Some of the most exciting developments in Medicine today are in the areas of genomics, personalized medicine, and regenerative medicine. Researchers are exploring new ways to use genetics to diagnose and treat diseases, while also developing new treatments that can regenerate damaged tissues and organs. One of the many inspiring figures in Medicine is Dr. Paul Farmer, who has dedicated his life to providing healthcare to some of the world's poorest communities. He founded Partners in Health, an organization that has helped to bring lifesaving medical care to millions of people around the world. At the undergraduate level, students typically study a range of subjects including anatomy, physiology, pharmacology, and pathology. They also gain practical experience through clinical rotations and internships. Some students may choose to specialize in areas such as surgery, pediatrics, or oncology. There are many potential career paths for those who study Medicine, including roles as physicians, surgeons, researchers, and healthcare administrators. Some of the most notable employers in this field include the World Health Organization, Doctors Without Borders, and the Mayo Clinic. To succeed in Medicine, it's important to have a strong foundation in science and math, as well as excellent communication and problem-solving skills. A genuine passion for helping others and a commitment to lifelong learning are also essential. If you're ready to embark on an exciting and rewarding career in Medicine, there's no better time to start exploring your options!
Did you know that adults catch more than 150 colds throughout their lives, and that a single family of viruses causes 30 to 50% of all colds? Understanding the complex relationship between viruses and our immune systems is not only fascinating, but also highly relevant to our daily lives. By reading about pleconaril, rhinovirus, and CRISPR, you'll learn about the science behind vaccines and antiviral drugs, and how they could help us tackle the common cold. But beyond that, exploring this topic will help you appreciate the incredible complexity and resilience of our immune systems, and the importance of maintaining our health. So grab a cup of tea and your favorite notebook, and get ready to dive into the fascinating world of viruses and immune systems!
Are you curious about the tiny viruses that inhabit your body? MIT Technology Review's biotech newsletter, The Checkup, explores the world of bacteriophages, or "phages" for short. These microscopic viruses have the potential to treat bacterial infections, but they've been largely abandoned in favor of antibiotics. With antimicrobial resistance on the rise, interest in phage therapy is making a comeback. Learn about the diversity and specificity of phages, and how they could be engineered to target specific bacteria. Discover the potential of phage therapy and the challenges that need to be overcome in this fascinating article.
Can blood rejuvenation really extend human lifespan by 10 healthy years? Silicon Valley entrepreneurs invest millions into life extension projects. But is it ethical? Read on to explore the scientific and ethical debates surrounding lifespan extension technologies.
DNA, or deoxyribonucleic acid, is the genetic code that provides instructions for the development and function of living organisms. In 1953, James Watson and Francis Crick discovered the double-helix structure of DNA, a feat that revolutionized the field of genetics and paved the way for advancements in medicine, forensics, and even biotechnology. The double-helix structure is made up of nucleotides, the building blocks of DNA, which consist of a sugar, a phosphate group, and one of four nitrogenous bases: adenine, thymine, guanine, and cytosine. These bases pair up in a specific way, with adenine always bonding to thymine, and guanine always bonding to cytosine. One of the most remarkable aspects of DNA is its ability to replicate itself. During cell division, DNA strands unzip and create two new strands, each containing one original and one new strand. This ensures that every cell in the body has an exact copy of the genetic code. DNA has also been used to solve crimes, with DNA profiling becoming a staple of modern forensic investigations. By analyzing DNA samples left at a crime scene, investigators can identify suspects or exonerate innocent people. In addition, DNA research has led to the development of gene therapy, a treatment that can replace or correct genes that cause genetic disorders. It has also paved the way for personalized medicine, where treatments are tailored to an individual's genetic makeup. Beyond its scientific applications, DNA has had a profound impact on society and culture. It has been the subject of numerous ethical debates, such as the use of genetic testing to determine an individual's risk for certain diseases, or the potential for genetic engineering to create "designer babies." With DNA at the forefront of modern science and technology, the possibilities for exploration and discovery are endless.
Do you have a passion for science and a desire to help people? If so, Optometry may be the perfect field of study for you. Optometry is a branch of medicine that focuses on the eyes and vision. It is a fascinating field that combines science, technology, and patient care to help people see clearly and live their best lives. Optometry is all about helping people to see the world around them. As an optometrist, you will use your knowledge of the eyes and vision to diagnose and treat a range of eye conditions, from simple refractive errors to more complex diseases such as glaucoma and cataracts. You will also help people to maintain their eye health and prevent vision problems from developing. One of the most exciting aspects of Optometry is the constant innovation and research that is taking place in the field. From new technologies that allow for more accurate diagnosis and treatment, to groundbreaking research into the causes and treatments of eye diseases, there is always something new and exciting happening in Optometry. At the undergraduate level, typical majors and modules include anatomy and physiology of the eye, optics, visual perception, and ocular disease. Students will also have the opportunity to gain practical experience through clinical placements and internships. After completing their undergraduate degree, students can go on to specialize in areas such as pediatric optometry, contact lenses, or vision therapy. With a degree in Optometry, there are a range of potential job opportunities available. Optometrists can work in private practice, hospitals, clinics, or for government agencies. Some notable employers in the field include Bausch + Lomb, Johnson & Johnson, and Essilor. To succeed in Optometry, students should have a strong background in science, particularly biology and chemistry. They should also possess excellent communication and interpersonal skills, as they will be working closely with patients on a daily basis. If you are passionate about science and helping people, a degree in Optometry may be the perfect choice for you.
Activities
Academic Extensions
Thought Experiments