Article
More like this
The making of chocolate is a primitive and unpredictable process involving wild rainforest insects, fungi, and microbes. Discover how the microbiome of cacao trees, tiny midges, and fermentation contribute to the $110-billion chocolate industry. Learn how researchers are working to standardize cacao-making and develop cacao-fermentation "starters."
Plants have been evolving for millions of years and have developed incredible adaptations to survive in their environments. One of the most impressive adaptations is drought resistance. In this write-up, we will explore the fascinating world of plant evolution and the incredible ways that plants have adapted to survive in dry environments. Did you know that there are plants that can survive without water for years? The cactus is one such plant that has developed unique adaptations to survive in the harsh desert environment. Its thick stems store water, and its shallow roots can quickly absorb moisture when it rains. The cactus also has small leaves that reduce water loss through transpiration and spines that provide shade to the stem, reducing water loss even further. Another interesting example of drought resistance in plants is the succulent. Succulents store water in their leaves, which become plump when water is available and shrink when water is scarce. They also have shallow roots that spread widely to quickly absorb moisture when it rains. Leading academics in the field of plant evolution and drought resistance have made significant contributions to our understanding of these adaptations. For example, Dr. Christine A. Beveridge has studied the molecular mechanisms behind drought resistance in plants and have identified genes that play a crucial role in this process. Her work has led to the development of drought-resistant crops, which have the potential to improve food security in dry regions. In conclusion, the world of plant evolution and drought resistance is full of fascinating facts, stories, and examples. By exploring this topic independently, students can deepen their understanding of the amazing adaptations that plants have developed over millions of years to survive in their environments.
In just 70 years, the UK's landscape has undergone drastic changes, with non-native species thriving and native plants dwindling due to modern agriculture and climate change. The Plant Atlas 2020, produced by the Botanical Society of Britain and Ireland, reveals the catastrophic loss of grasslands, heathlands, and other habitats that would shock those brought up in the 1950s. The survey also highlights the impact of climate change on plant life and calls for stronger laws and sustainable land management to protect flora. Sir David Attenborough presents a new BBC documentary, Wild Isles, on the subject.
Pesticides not targeted at flowers may pose a hidden threat to pollinators, according to new research from Trinity and DCU. The study, the first of its kind in Ireland, found residues of several pesticides in the nectar and pollen of both crop and wild plants, with some chemicals lingering for years after application. The findings have implications for the health of bees and other pollinators, as well as for ecosystem function, crop production, and human health.
Are fast-lived species taking over the world? Recent research published in Global Change Biology found that fast-lived animals are increasing in numbers while slow-lived animals are in decline, especially in areas of rapid cropland or bare soil expansion. The study raises important questions about how human actions are rewiring natural ecosystems and the far-reaching effects on the natural world.
Have you ever wondered what goes into creating a beautiful garden or a lush forest? Do you have a fascination for the natural world and a passion for plants? If so, a career in Botany might be the perfect fit for you! Botanists are scientists who study plants and their relationship with the environment. They explore the biology, ecology, and evolution of plants, including their structure, function, and distribution. Botanists play a crucial role in understanding and preserving the natural world, as well as developing new medicines, crops, and other products. As a Botanist, you could work in a variety of settings, from research labs and botanical gardens to national parks and conservation organizations. You might specialize in areas such as plant genetics, ecology, or biotechnology, or focus on specific types of plants, such as trees, flowers, or algae. Typical duties of a Botanist might include conducting field research, analyzing data, writing reports and articles, teaching and mentoring students, and collaborating with other scientists and professionals. You might also work on projects related to climate change, biodiversity, or sustainable agriculture, among other topics. To become a Botanist, you'll typically need a bachelor's degree in Botany, Biology, or a related field. Popular undergraduate programs and majors include Plant Science, Horticulture, Environmental Science, and Biochemistry. You may also choose to pursue a graduate degree for advanced research or teaching opportunities. Helpful personal attributes for a career in Botany include curiosity, creativity, attention to detail, and a passion for learning. You should also have strong analytical and communication skills, as well as the ability to work independently and as part of a team. Job prospects for Botanists are generally good, with opportunities in both the public and private sectors. Some notable potential employers include the United States Department of Agriculture, the National Park Service, the Smithsonian Institution, and private biotechnology companies. So if you're interested in a career that combines your love of plants with scientific inquiry and environmental stewardship, consider becoming a Botanist. Your work could make a real difference in the world and inspire others to appreciate the beauty and complexity of the natural world.
Do you find the microscopic world fascinating? Are you interested in exploring the hidden world of microorganisms? If so, a career in microbiology might be just what you're looking for! Microbiology is the study of living organisms that are too small to be seen with the naked eye, such as bacteria, viruses, fungi, and parasites. As a microbiologist, you'll have the opportunity to explore the fascinating world of microorganisms and make important contributions to fields like medicine, agriculture, and environmental science. One of the most appealing aspects of a career in microbiology is the potential to make a real difference in the world. For example, microbiologists play a critical role in developing vaccines and treatments for infectious diseases like COVID-19. They also work to develop new agricultural techniques that can improve crop yields and reduce the use of harmful pesticides. As a microbiologist, your duties might include conducting research, analyzing data, and developing new techniques for studying microorganisms. You might also specialize in a particular area of microbiology, such as medical microbiology, environmental microbiology, or industrial microbiology. To become a microbiologist, you'll typically need a bachelor's degree in microbiology, biology, or a related field. Some popular undergraduate programs and majors include microbiology, biochemistry, and molecular biology. In addition to a strong academic background, there are several personal attributes that can be helpful in a career in microbiology. These include a strong attention to detail, excellent problem-solving skills, and the ability to work well in a team. Job prospects for microbiologists are generally strong, with opportunities available in both the public and private sectors. Some notable potential employers include the Centers for Disease Control and Prevention (CDC), the National Institutes of Health (NIH), and pharmaceutical companies like Pfizer and Johnson & Johnson. So if you're interested in exploring the fascinating world of microorganisms and making a real difference in the world, a career in microbiology might be the perfect fit for you!
Pollinators, such as bees and butterflies, are essential to our planet's biodiversity. They facilitate the reproduction of flowering plants, which in turn support other wildlife and contribute to the overall health of ecosystems. Sadly, pollinators face numerous threats, including habitat loss, pesticides, and climate change. In this write-up, we'll explore the vital role of pollinators in biodiversity conservation, as well as the challenges they face. First, let's define biodiversity. It refers to the variety of life on Earth, including different species, ecosystems, and genetic diversity within species. Pollinators play a crucial role in maintaining this diversity by helping plants reproduce. Over 75% of the world's food crops depend on pollinators, and they also support the growth of wildflowers and other plants that provide habitat for other animals. But pollinators are in trouble. According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), over 16% of vertebrate pollinators, such as birds and bats, are threatened with extinction. In addition, around 40% of invertebrate pollinator species, such as bees and butterflies, are facing the same fate. One leading academic in this field is Dr. Dave Goulson, a professor of biology at the University of Sussex. He has conducted extensive research on the importance of pollinators and the threats they face. In his book, "The Garden Jungle," he emphasizes the role of urban gardens in supporting pollinators and other wildlife. Another academic, Dr. Rachael Winfree from Rutgers University, has studied the impact of habitat fragmentation on pollinator communities. Her research shows that smaller patches of habitat can still support pollinators, but it's crucial to have a diversity of plants and habitats available. So, what can we do to help pollinators? There are many actions we can take, from planting pollinator-friendly gardens to reducing pesticide use. We can also support organizations that work to protect pollinators, such as the Xerces Society and the Pollinator Partnership. In conclusion, pollinators play a vital role in maintaining biodiversity, but they face numerous threats. By learning more about pollinators and taking action to protect them, we can help to ensure a healthy and diverse planet for future generations.
Did you know that ponds are packed full of bizarre and mysterious sounds made by aquatic insects, booming fish, and popping plants? Scientists have only just started to understand the diverse underwater orchestra of ponds, and this research is the first to provide a detailed description of pond soundscapes in the UK. Using acoustic monitoring, we can learn more about the daily cycles of freshwater life and prevent irreversible species loss due to climate change and habitat loss.
If you love the outdoors, have a passion for science, and want to make a difference in the world, then a career in Agricultural Sciences might be just what you're looking for! Agricultural Sciences is a field that encompasses the study of plants, animals, and the environment, and how they all interact with each other. It's a fascinating area of study that combines biology, chemistry, and engineering to help us better understand the natural world and how we can use it to improve our lives. As an Agricultural Scientist, you could work in a variety of roles, from researching new crop varieties and developing sustainable farming practices, to studying animal behaviour and improving livestock breeding techniques. You might even work in the food industry, helping to develop new products or improve existing ones. Some of the most exciting aspects of this field include the potential to work with cutting-edge technology, such as drones and sensors, to gather data and make informed decisions. You could also have the opportunity to travel the world, working on projects in developing countries and helping to improve food security and sustainability. Typical duties in Agricultural Sciences might include conducting experiments and field trials, analyzing data, writing reports and research papers, and presenting findings to colleagues and stakeholders. You might also work closely with farmers, ranchers, and other agricultural professionals to help them implement new practices and technologies. There are many areas of specialization within Agricultural Sciences, including plant breeding, soil science, animal science, and food science. Other related fields include environmental science, ecology, and biotechnology. To pursue a career in Agricultural Sciences, you'll typically need a Bachelor's degree in a relevant field, such as Agricultural Science, Biology, or Environmental Science. Some popular undergraduate programs and majors include Crop Science, Animal Science, and Food Science. Helpful personal attributes for success in this field include a strong work ethic, attention to detail, good communication skills, and a passion for learning. You should also be comfortable working both independently and as part of a team. Job prospects in Agricultural Sciences are generally good, with a growing demand for professionals who can help address global challenges such as climate change, food security, and sustainable agriculture. Potential employers include government agencies, research institutions, and private companies such as Monsanto, Syngenta, and Cargill. So if you're looking for a rewarding and exciting career that combines science and nature, consider a career in Agricultural Sciences!
Discover the fascinating world of seeds with this award-winning book that takes you on a journey through their natural and human history. From the nutmeg and pepper that drove the Age of Discovery to the coffee beans that fueled the Enlightenment, seeds have played a crucial role in shaping diets, economies, and civilizations around the globe. Through the eyes of a field biologist and the charm of a fireside storyteller, explore the beauty, wonder, and evolutionary marvels of seeds that are often overlooked. Essential reading for anyone who loves to see a plant grow. Recommended for botanists, environmentalists, farmers, historians, and anyone curious about the natural world, this book offers a unique perspective on the often-overlooked importance of seeds. It delves into the historical, cultural, and economic significance of seeds, showing how they have shaped human societies and impacted global events. The book also offers a scientific exploration of the biology and ecology of seeds, making it relevant to students and professionals in fields such as botany, biology, and agriculture. Overall, this book offers a captivating and informative read for anyone interested in the wonders of the natural world.
The invasion of purple sea urchins has devastated kelp forests along the coasts of California, Japan, Norway, Canada, and Tasmania, leaving behind barren underwater landscapes that can last for decades. However, a Norwegian company called Urchinomics has a plan to restore kelp forests and create a new fishery for overpopulated urchins through "urchin ranching." Urchin ranching could potentially create a local speciality dining market for purple urchin uni, but it will take an aggressive and thorough approach to remove enough urchins to restore kelp forests.
Have you ever wandered through a forest and wondered about the secrets that lie within? The Hidden Life of Trees by Peter Wohlleben is a fascinating exploration of the communication and community that exists within forests. Wohlleben shares his love for the woods and explains the incredible processes of life, death, and regeneration that take place in the woodland. Through groundbreaking discoveries, he reveals the previously unknown life of trees and their communication abilities. Discover how trees live together with their children, share nutrients, and create an ecosystem that benefits the whole group. Recommended for environmentalists, biologists, ecologists, and anyone interested in the natural world. The Hidden Life of Trees provides a unique perspective on the life and communication of trees, revealing the intricate processes of the forest ecosystem. It offers insights into the importance of community and the impact of solitary life on trees, which can also be applied to human society. This book is relevant to those interested in environmental sustainability and the impact of eco-friendly practices on the health of our planet. It is also a fascinating read for those who simply appreciate the beauty and complexity of the natural world.
Pesticides are ubiquitous in modern agriculture, but their detrimental effects on human health and the environment are becoming increasingly evident. A new approach, called regenerative agriculture, is emerging as a sustainable and healthier alternative. Biological farming practices like those of Tim Parton, a UK farm manager, prioritise soil and environmental health by minimising synthetic inputs, and have led to increased biodiversity and crop yields without the need for harmful chemicals. However, while the environmental and health benefits of regenerative agriculture are clear, the transition away from pesticide-dependent farming remains a challenge for many.
Are you fascinated by the ocean and all the creatures that live within it? Do you want to be part of an industry that helps to sustainably feed the world's population? Then the study of Aquaculture and Fisheries might be just the thing for you! Aquaculture and Fisheries is the study of the breeding, rearing, and harvesting of fish, shellfish, and aquatic plants in controlled environments. It is a field that has been gaining increasing attention in recent years, as concerns about overfishing and the impact of climate change on the oceans have grown. One of the most exciting aspects of Aquaculture and Fisheries is the potential for innovation and research. Scientists and researchers in this field are constantly working on new ways to improve the sustainability and efficiency of aquaculture operations. For example, they might develop new breeding techniques to produce fish that are more resistant to disease, or study the impact of different feed formulations on the growth and health of fish. There are also many inspiring academic figures in this field, such as Dr. Daniel Pauly, who is known for his work on the impact of overfishing on global fish stocks. His research has helped to raise awareness about the need for sustainable fishing practices and has influenced policy decisions around the world. At the undergraduate level, students in Aquaculture and Fisheries typically study a range of modules, including fish biology, aquaculture systems, and aquatic ecology. There are also opportunities for further specialisation in areas such as fish nutrition or aquatic animal health. Some interesting and enticing examples of real-life specialisations include working with marine mammals, studying the genetics of fish populations, or developing new aquaculture systems. The potential future jobs and roles in Aquaculture and Fisheries are diverse and exciting. Graduates might go on to work in fish farms, research institutions, or government agencies responsible for managing fisheries. Key industries for prospective future employment include commercial fishing, aquaculture, and seafood processing. Some notable and attractive potential employers from public and private sectors around the world include the National Oceanic and Atmospheric Administration (NOAA) in the US, Marine Harvest in Norway, and the Fisheries and Oceans Canada. To succeed in this field of study, it is helpful to have a strong interest in marine biology and environmental science. Good communication skills are also important, as graduates may need to work with a range of stakeholders, from fishermen to policymakers. Additionally, a passion for sustainability and a desire to make a positive impact on the world can help to drive students towards success in Aquaculture and Fisheries.
Maria Sibylla Merian was a naturalist and illustrator who defied convention and made significant contributions to the study of entomology, the study of insects. She was one of the first to describe the metamorphosis of insects in detail and portrayed insects surrounded by the plants they relied on, revealing their relationship to the wider ecosystem. Merian's groundbreaking work, 'The Metamorphosis of the Insects of Suriname', published in 1705, documented many species in Suriname's jungle, and its stunning illustrations depicted stages of development of Suriname's veracious caterpillars and vibrant butterflies. Merian's legacy has endured, and her work on the biodiversity of Suriname is still valued by scientists and could show us how some species may adapt to climate change. Learning about Merian's work can inspire students to explore and appreciate the natural world, understand the importance of biodiversity, and encourage them to pursue their passions despite challenges and societal expectations.
Are you interested in the science behind our food and the environment? Do you want to make a difference in the world by creating sustainable agricultural practices? If so, a career in Agricultural Sciences might be the perfect fit for you! Agricultural Sciences is a broad field that encompasses everything from plant and animal sciences to soil science and agricultural economics. It is a field that is constantly evolving, with new technologies and techniques being developed to improve crop yields and reduce environmental impact. As an Agricultural Scientist, you could be involved in a variety of tasks, including conducting research on crop genetics, developing new farming techniques, or working on policy development to improve agricultural practices. You could specialize in areas such as animal husbandry, crop management, or soil science, among others. To pursue a career in Agricultural Sciences, you will typically need a bachelor's degree in a related field such as Agricultural Science, Environmental Science, or Biology. Some popular undergraduate programs and majors include Agronomy, Horticulture, and Agricultural Engineering. In addition to a strong academic background, there are certain personal attributes that can be helpful in this field. These include a passion for the environment, strong problem-solving skills, and excellent communication skills. The job prospects for Agricultural Scientists are promising, with a growing demand for professionals in this field. You could work for a variety of employers, including government agencies, universities, or private companies. Some notable employers include the United States Department of Agriculture (USDA), Monsanto, and the World Bank. A career in Agricultural Sciences can be both rewarding and fulfilling, allowing you to make a positive impact on the world around you. So why not explore this exciting field further and see where it could take you?
Have you ever caught fireflies on a summer night? Did you know that these magical insects are not just fun to watch, but also important for our ecosystem? In a recent article from Smithsonian Magazine, we learn about Christopher Heckscher, an ornithologist who has been studying fireflies for almost 20 years and is now working with an international panel of firefly experts to determine which firefly species are closest to extinction. The article takes us on a journey through the New Jersey wetlands, where Heckscher searches for fireflies and sheds light on the importance of their conservation efforts. Don't miss out on this fascinating read!
Are you passionate about the environment, sustainability, and food production? Do you want to make a real difference in the world? Then studying Agricultural Sciences at university might be the perfect fit for you! Agricultural Sciences is a fascinating field that encompasses a wide range of topics, from plant and animal biology to soil science, economics, and policy. It's a field that is constantly evolving, with new research and innovations being developed all the time to address the challenges facing our planet. One of the most exciting aspects of Agricultural Sciences is the hands-on, real-world experience you'll gain. You'll have the opportunity to work on research projects and internships that will allow you to get your hands dirty and make a real impact. For example, you might work on developing new crop varieties that are more resistant to pests and diseases, or you might help design sustainable farming practices that reduce the environmental impact of agriculture. There are also many inspiring academic figures in this field, such as Norman Borlaug, who is known as the father of the Green Revolution for his work in developing high-yield crops that helped feed millions of people around the world. Other notable figures include Rachel Carson, who is credited with starting the modern environmental movement with her book Silent Spring, and Vandana Shiva, who is a leading voice in the movement for sustainable agriculture and food systems. At the undergraduate level, you'll typically take courses in subjects like plant biology, animal science, agricultural economics, and environmental policy. You'll also have the opportunity to specialize in areas like sustainable agriculture, food science, or agribusiness. And there are many exciting career paths you can pursue with a degree in Agricultural Sciences, from working in research and development for companies like Monsanto or Syngenta, to working for government agencies like the USDA or the EPA, to starting your own sustainable farming business. To succeed in this field, you'll need to be passionate about the environment and sustainability, as well as have a strong background in science and math. You'll also need to be a creative problem-solver, able to think outside the box to come up with innovative solutions to the challenges facing our planet. So if you're ready to make a real difference in the world, consider studying Agricultural Sciences at university. It's a field that is both intellectually stimulating and deeply rewarding, and it offers endless opportunities to make a positive impact on our planet and its people.
Understanding the science behind the changing colors of leaves in the fall is not only fascinating but also important for our understanding of the natural world around us. The process is triggered by less daylight, causing the old chlorophyll to disappear and yellow and orange pigments to become visible. The intensity of the colors is connected to temperature, and the drier autumn weather triggers a hormone telling the tree to drop its leaves. Evergreens have a waxy coating and contain a chemical like anti-freeze to survive the winter. By learning about these concepts, students can gain a deeper appreciation for the natural world and develop critical thinking skills. Additionally, understanding the science behind fall leaves can inspire students to explore other scientific topics and engage in self-directed projects.
Activities
Academic Extensions
Thought Experiments