Article
More like this
Are you aware that over 2 billion people globally drink water contaminated with disease-causing microbes? Stanford University and SLAC National Accelerator Laboratory have developed a low-cost, recyclable powder that can kill thousands of waterborne bacteria per second when exposed to ordinary sunlight. This discovery could be a significant breakthrough for the nearly 30 percent of the world's population without access to safe drinking water. The results of their study are published in Nature Water.
Chemistry is the study of matter, its properties, and how it interacts with other substances. It is a fascinating field that is essential to our everyday lives. From the food we eat to the clothes we wear, chemistry plays a vital role in shaping the world around us. In recent years, chemistry has become even more exciting as researchers have made groundbreaking discoveries that are changing the world. For example, chemists are developing new materials that are stronger, lighter, and more durable than anything we've seen before. They are also working on new drugs that can cure diseases that were once thought to be incurable. Some of the most inspiring academic figures in the field of chemistry include Marie Curie, who discovered radium and polonium and was the first woman to win a Nobel Prize, and Linus Pauling, who won two Nobel Prizes for his work on chemical bonds and the structure of molecules. At the undergraduate level, students can expect to study a range of topics, including organic chemistry, physical chemistry, and analytical chemistry. These modules will provide a solid foundation in the field and prepare students for further specialisation in areas such as medicinal chemistry, materials science, or environmental chemistry. Chemistry graduates are in high demand, and there are a range of exciting career options available to them. They can work in industries such as pharmaceuticals, biotechnology, or energy, or they can pursue careers in academia or research. Some notable employers include GlaxoSmithKline, Pfizer, and Dow Chemical Company. To succeed in chemistry, students should have a strong interest in science and mathematics. They should also be analytical, detail-oriented, and have excellent problem-solving skills. With these attributes and a passion for the subject, students can embark on a rewarding career in chemistry and make a real difference in the world.
Scotland has become the first country to ban desflurane, an anaesthetic gas with a global warming potential 2,500 times greater than carbon dioxide, from its hospitals due to its environmental threat. The move would cut emissions equivalent to powering 1,700 homes a year. UK hospitals have already cut down, with over 40 hospital trusts in England and some in Wales having stopped using it. NHS England will introduce a similar ban from 2024. Anaesthetists have switched to safer alternatives, but more needs to be done to reduce the NHS's carbon footprint.
Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, making it easier for patients to receive the medicine they need to manage their symptoms. But how do these devices work, and what scientific principles underlie their design? At the heart of an inhaler is the aerosol, a fine mist of medication that is delivered directly to the lungs. To create this mist, inhalers use a propellant, which expands rapidly upon release, creating a burst of pressure that forces the medication out of the device and into the airways. One key challenge in designing inhalers is ensuring that the aerosol particles are small enough to be easily inhaled, yet large enough to deposit effectively in the lungs. This is where the science of aerodynamics comes into play, as researchers work to optimize the shape and size of the particles to achieve the ideal balance of delivery efficiency and patient comfort. Recent advancements in inhaler technology have led to the development of smart inhalers, which use sensors and digital connectivity to monitor patient use and provide personalized feedback and reminders. This innovation has the potential to improve patient adherence and outcomes, and is just one example of how inhaler delivery systems continue to evolve and improve. Leading academics in the field include Dr. Richard Costello, a respiratory physician and clinical scientist at the Royal College of Surgeons in Ireland, and Dr. Omar Usmani, a consultant physician in respiratory medicine at the Royal Brompton Hospital and professor of respiratory medicine at Imperial College London. These experts have contributed to important research on inhaler technology and the treatment of respiratory diseases, and continue to drive innovation in the field. Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, allowing patients to manage their symptoms with greater ease and precision. By understanding the science behind aerosol medicine and the principles that underlie inhaler design, we can appreciate the incredible innovation that has made this possible.
Stanford researchers have developed a smart bandage that painlessly falls away from the skin and tracks signs of recovery and infection. It even responds with electrical stimulation to hasten healing. The bandage resulted in 25% faster healing, greater blood flow to injured tissue, and less scarring in animal studies. The bandage is just one example of how Stanford researchers combine organic chemistry and novel materials to reimagine medical devices in more powerful, personal, and unobtrusive ways.
From toxic leaks to microplastic pollution, scientists are exploring how pollutants affect human health. Exposomics is a new field that aims to understand our exposure to chemicals and their impact. Carmen Marsit, a molecular epidemiologist, is leading the charge to measure our exposure to chemicals and their breakdown products in blood. Learn how scientists are using gas chromatography, liquid chromatography, and mass spectrometry to identify the chemicals we are exposed to and the potential health risks associated with chronic exposure.
Did you know that even electric vehicles produce harmful pollution from tyre wear? According to a new briefing paper by Imperial College London’s Transition to Zero Pollution initiative, six million tonnes of tyre wear particles are released globally each year, with potentially negative effects on biodiversity and human health. While research and innovations dedicated to tackling fuel emissions have been increasing, the environmental and health impacts of tyre wear have been neglected. The researchers call for more investment in tyre wear research to fully understand and reduce their impacts, including particle capture technologies, new advanced materials, and efforts to reduce vehicle weight.
How can urban planning decisions impact health? A new tool evaluates factors like green spaces and air pollution to assess potential health effects.
Are you interested in learning about a new antimicrobial coating material that can effectively kill bacteria and viruses, including MRSA and Covid-19? Researchers at the University of Nottingham's School of Pharmacy have used a common disinfectant and antiseptic to create this new material that could be used as an effective antimicrobial coating on a range of plastic products. This new study, published in Nano Select, offers an effective way to prevent the spread of pathogenic microorganisms and address the ever-increasing threat of antimicrobial resistance. Read more to find out how this material was created and how it can help in hospital settings.
New research has identified gold-based compounds that could treat multidrug-resistant "superbugs", with some effectiveness against several bacteria. Antibiotic resistance is a global public health threat, and the development of new antibiotics has stalled. Gold metalloantibiotics, compounds with a gold ion at their core, could be a promising new approach. Dr. Sara M. Soto Gonzalez and colleagues studied the activity of 19 gold complexes against a range of multidrug-resistant bacteria isolated from patients. The gold compounds were effective against at least one bacterial species studied, with some displaying potent activity against several multidrug-resistant bacteria.
Are you fascinated by the inner workings of the human body and want to play a crucial role in diagnosing and treating illnesses? Look no further than the field of radiography! Radiography is the study of medical imaging, using X-rays, CT scans, MRIs, and other techniques to create images of the body's internal structures. It's a vital field that helps doctors detect and diagnose a wide range of medical conditions, from broken bones to cancer. In recent years, radiography has seen some exciting innovations and breakthroughs. For example, researchers are exploring the use of AI and machine learning to improve the accuracy and speed of medical imaging. And new techniques like 3D printing are allowing doctors to create custom implants and prosthetics for their patients. At the undergraduate level, students can expect to take courses in anatomy, physiology, medical terminology, and of course, radiographic imaging techniques. Many programs also offer clinical rotations, giving students hands-on experience working with patients and medical professionals. After graduation, there are a wide range of career paths available to radiography majors. Some graduates go on to become radiologic technologists, performing diagnostic imaging procedures like X-rays and CT scans. Others become radiation therapists, using radiation to treat cancer and other diseases. And still others go on to become medical physicists, working to develop and improve medical imaging technology. There are many potential employers for radiography graduates, including hospitals, clinics, and private imaging centers. Some notable examples include the Mayo Clinic, Johns Hopkins Hospital, and Memorial Sloan Kettering Cancer Center. To succeed in radiography, students should have a strong background in science and math, as well as excellent communication skills and attention to detail. If you're passionate about healthcare and interested in a challenging and rewarding career, radiography may be the perfect field for you.
Waste management is an essential aspect of public health, and it has a long and fascinating history. From ancient Roman public latrines to modern wastewater treatment plants, the evolution of toilets and sewage systems has been pivotal in preventing the spread of dangerous microorganisms that cause cholera, dysentery, and typhoid. Learning about the history of waste management is not only intellectually stimulating but also practically important for understanding the importance of proper sanitation. While modern toilets have a wide range of features, billions of people around the world still lack access to proper sanitation facilities, putting them at risk of disease. By studying the history of waste management and developing new sanitation technologies, we can address the behavioral, financial, and political issues that produce inequity throughout the sanitation pipeline and improve public health for all.
Are you tired of feeling hot and sticky during the summer months? Look no further than Japan, where a dizzying array of personal cooling products are being sold to combat the country's hot and humid summers. From menthol and eucalyptus-based face masks to wearable fans and cooling vests, the Japanese market has something for everyone. But with rising temperatures and energy concerns, the need for more energy-efficient air conditioning and renewable energy sources is becoming increasingly pressing. Learn more about the innovative ways Japan is tackling its heatwave problem in this fascinating article from BBC.
A team of researchers from UCLA has developed a new remote diagnostic technique that overcomes bias against darker skin tones in heart rate measurements. By combining the light-based measurements of a camera with radio-based measurements from radar and refining them through machine learning, the new technique improves the accuracy and fairness of heart rate readings for patients across a wide variety of skin tones. The study's findings, recently published in the journal ACM Transactions on Graphics, offer a promising path toward achieving more accurate and equitable remote technologies that can be used to remotely monitor patients both in clinical settings and from patients’ homes.
Get ready for a game-changing medical innovation! Engineers from MIT have developed a biocompatible tissue glue inspired by barnacles that can quickly stop bleeding and seal wounds in a matter of seconds. This new paste could revolutionize the way we treat traumatic injuries and control bleeding during surgeries.
Think cold weather is only dangerous in extreme conditions? Think again. Research from the University of South Wales shows that even mild temperatures like 10°C can have a profound impact on the heart, lungs, and brain. Explore the science behind cold environments and their effects on the body in this eye-opening experiment.
Chemotherapy is a type of cancer treatment that uses drugs to kill rapidly dividing cancer cells in the body. The drugs are delivered through pills and injections and are toxic to all cells in the body, including healthy ones. However, cancer cells are more susceptible to the effects of chemotherapy because they multiply rapidly. Chemotherapy drugs can damage hair follicles, cells of the mouth, gastrointestinal lining, reproductive system, and bone marrow, which can cause side effects such as hair loss, fatigue, infertility, nausea, and vomiting. Despite these side effects, chemotherapy has greatly improved the outlook for many cancer patients. Advances in treatment have led to up to 95% survival rates for testicular cancer and 60% remission rates for acute myeloid leukemia. Researchers are still developing more precise interventions to target cancer cells while minimizing harm to healthy tissues. Learning about chemotherapy can help high school students understand the science behind cancer treatment and the importance of ongoing research to improve outcomes for patients.
Have you ever heard of the field of nanotechnology? It's a rapidly growing and exciting field that is revolutionizing the way we live, work, and play. Nanotechnology is the study and manipulation of materials on a molecular or atomic scale, and it has the potential to transform everything from medicine to electronics. Imagine creating tiny robots that can swim through your bloodstream and target cancer cells, or developing ultra-light and ultra-strong materials for airplanes and cars. These are just a few examples of the amazing possibilities that nanotechnology offers. As a nanotechnologist, you would work with these tiny materials to create new products and technologies. You might design and develop new materials, work on improving existing ones, or create entirely new devices and systems. You could work in a variety of fields, from medicine to electronics to energy. Typical duties in nanotechnology might include conducting experiments, analyzing data, designing and building prototypes, and collaborating with other scientists and engineers. There are also many areas of specialization within nanotechnology, such as nanoelectronics, nanobiotechnology, and nanomaterials. To get started in this field, you'll need a strong background in science and engineering. Many nanotechnologists have degrees in materials science, chemistry, physics, or electrical engineering. Some popular undergraduate programs and majors include nanotechnology engineering, materials science and engineering, and chemical engineering. In addition to technical skills, there are certain personal attributes that can be helpful in this field. These might include a strong attention to detail, excellent problem-solving skills, and a creative and innovative mindset. The job prospects for nanotechnologists are excellent, with many exciting opportunities available in both the public and private sectors. Some notable employers in this field include IBM, Intel, and Samsung, as well as government agencies such as NASA and the National Institutes of Health. So if you're looking for a career that is both challenging and rewarding, consider exploring the field of nanotechnology. Who knows what amazing discoveries and inventions you might be a part of in the future!
Have you ever had a moment of inspiration that led to a groundbreaking invention? In 1816, a doctor named René Laennec had just that moment while walking through Paris. He observed children using a long piece of wood to amplify sound and later used this concept to create the stethoscope. By placing a rolled-up sheet of paper to a young woman's chest, he was able to hear her heartbeat with clarity. Laennec spent three years perfecting his invention, which eventually became the forerunner to the stethoscopes we still use today. Learning about the development of the stethoscope not only expands your knowledge of medical history but also inspires you to think creatively and use everyday observations to solve complex problems.
This story of Harry Coover, a chemist during World War II, highlights the importance of persistence and creative thinking in academic pursuits. Coover and his team encountered challenges in their research, but instead of giving up, they looked for alternative uses for the materials they were working with. This led to the creation of super glue, which has saved countless lives in medical settings. This story shows that academic curiosity and perseverance can lead to unexpected discoveries with practical applications. By exploring academic topics through reading, reflection, and self-directed projects, students can develop the skills needed to tackle complex problems and make meaningful contributions to society.
Activities
Academic Extensions
Thought Experiments