Article
More like this
Pesticides not targeted at flowers may pose a hidden threat to pollinators, according to new research from Trinity and DCU. The study, the first of its kind in Ireland, found residues of several pesticides in the nectar and pollen of both crop and wild plants, with some chemicals lingering for years after application. The findings have implications for the health of bees and other pollinators, as well as for ecosystem function, crop production, and human health.
Umami, the savory essence found in a variety of foods, was only recently recognized as the fifth fundamental human taste. Scientists have now discovered how glutamate, the chemical responsible for umami taste, activates nerves on the tongue and how inosinate and guanylate can enhance its flavor. Learn how this "Venus flytrap" mechanism works and why a good Japanese broth contains both seaweed and dried fish flakes. Discover the truth behind MSG and why it's not as bad as some may think.
Understanding the science behind the changing colors of leaves in the fall is not only fascinating but also important for our understanding of the natural world around us. The process is triggered by less daylight, causing the old chlorophyll to disappear and yellow and orange pigments to become visible. The intensity of the colors is connected to temperature, and the drier autumn weather triggers a hormone telling the tree to drop its leaves. Evergreens have a waxy coating and contain a chemical like anti-freeze to survive the winter. By learning about these concepts, students can gain a deeper appreciation for the natural world and develop critical thinking skills. Additionally, understanding the science behind fall leaves can inspire students to explore other scientific topics and engage in self-directed projects.
Ever wondered why corn has silk? Discover the comically euphemistic explanation from 1915 and learn how the tassel and silk play a crucial role in fertilizing each kernel. Find out the truth behind the mystery and eat your ovaries-on-a-cob while you're at it.
Have you ever wondered how we know how old something is? For trees, we count the rings, and for people, we ask for their birth certificate. But what about fossils? Well, fossils have their own internal clock, and scientists can read it by looking at the ratio of two different types of carbon atoms. Carbon dating works for fossils up to about 60,000 years old, and by measuring the ratio of carbon 14 to carbon 12, we can determine how many thousands of years have passed since the animal died. Learning about carbon dating and other scientific methods can help us better understand the world around us and our place in it. So, why not explore this fascinating topic further and discover the secrets that fossils can reveal?
Food is energy for the body, and the average number of calories in fat, protein, and carbohydrates is still used as an important marker for nutrition today. However, biologist Rob Dunn explains that there is no such thing as an average food or person. How many calories we extract from food depends on the biology of the species we are eating, how we cook and process our food, and even on the different bacterial communities in different people's guts. Standard calorie counts don't take any of these factors into consideration, resulting in numbers that are slightly inaccurate, at best, and sometimes rather misleading. Digestion turns out to be such a messy affair that we'll probably never have precise calorie counts for all the different foods we'd like to eat and prepare in so many different ways. However, learning about the biology of food and digestion can help us make better choices and understand our bodies better.
How do we grow seedless fruit? Discover the fascinating history and science behind hybridization and grafting, and the latest genetic research that could lead to new seedless varieties. From Navel oranges to mutant sugar apples, explore the world of fruit breeding.
Ever heard of umami? It's the mystery taste that adds savouriness to your favorite foods and has been recognized as a basic taste along with sweet, sour, bitter, and salt. Join the Japanese chemist Kikunae Ikeda on his journey of isolating the key amino acid responsible for the taste and revolutionizing the food industry with his discovery.
Cotton, a seemingly simple and ubiquitous material, has a complex and fascinating biology that has allowed it to become one of the most versatile materials in the world. The intricate structure of cotton fibers allows them to be both strong and flexible, and their length and density determine the softness and durability of the fabric they produce. Learning about the biology of cotton can inspire students to explore the connections between science and everyday life, and to appreciate the complexity of seemingly simple materials. Understanding the growth of cotton fibers can also lead to practical benefits, such as optimizing growth conditions to produce stronger and more resilient cotton. By exploring the biology of cotton, students can gain a deeper understanding of the world around them and develop skills in critical thinking and problem-solving.
Are you fascinated by the natural world and want to explore the mysteries of the universe? Then the study of Natural Sciences might be the perfect fit for you! Natural Sciences is a broad field of study that encompasses a wide range of scientific disciplines, including biology, chemistry, physics, geology, and astronomy. It is an interdisciplinary field that seeks to understand the natural world and the laws that govern it. One of the most appealing aspects of studying Natural Sciences is the opportunity to make groundbreaking discoveries that can change the world. From the discovery of penicillin by Alexander Fleming to the development of the theory of relativity by Albert Einstein, Natural Sciences has produced some of the most significant innovations in human history. And with new technologies and research methods emerging every day, the possibilities for future discoveries are endless. At the undergraduate level, students can choose from a variety of majors and modules that allow them to specialize in a particular area of Natural Sciences. For example, a biology major might focus on genetics or ecology, while a physics major might specialize in astrophysics or quantum mechanics. And for those who want to take their studies even further, graduate programs in Natural Sciences offer a wide range of research opportunities and specialized areas of study. But what can you do with a degree in Natural Sciences? The answer is almost anything! Graduates of Natural Sciences are highly sought after in a variety of industries, including healthcare, technology, energy, and environmental science. Some of the most notable employers in these industries include NASA, Tesla, and the World Health Organization. To succeed in Natural Sciences, you need to have a curious mind, a passion for discovery, and a strong foundation in math and science. You should also be comfortable with experimentation and problem-solving, as these are the skills that will help you make groundbreaking discoveries and contribute to the advancement of human knowledge. So if you're ready to explore the mysteries of the universe and make a difference in the world, consider studying Natural Sciences. It's a field that offers endless possibilities for discovery and innovation, and it's sure to be a rewarding and fulfilling career path.
Calcium carbonate may sound like just another chemical compound, but it’s actually the building block for some of the most exquisite and diverse structures found in the ocean, from pearls to shells to coral. Creatures like mollusks use calcium carbonate to carefully construct their shells, controlling their composition at the molecular level to achieve stunning colors and patterns. Learning about the artful ways in which these creatures use calcium carbonate to create their protective structures not only expands our understanding of the natural world but also teaches us about the importance of adaptation and resilience. By exploring this topic further, you can develop a deeper appreciation for the intricacies of the natural world and the ways in which organisms have evolved to survive and thrive in their environments.
Does decanting wine really improve its taste or is it just a wine snob's affectation? Experts disagree on whether decanting makes a perceptible difference, but agree on one clear benefit. Discover the controversy behind decanting and decide for yourself whether it's worth it.
Discover the scientist who uncovered the savory fifth taste, umami, and how it's related to the infamous MSG. Learn how umami has become a buzzword in the culinary world, inspiring chefs to create meaty flavors in meatless dishes.
Did you know that insects communicate with each other through a complex system of signals and cues? This phenomenon is known as "antennation," and it's a fascinating area of study that has captured the attention of many researchers in the field of entomology. Antennation is the process by which insects use their antennae to sense and interpret chemical and physical signals from their environment and from other insects. For example, ants use antennation to communicate with one another about the location of food sources and potential threats. Bees use antennation to coordinate their movements during foraging, and to communicate with other members of their hive. But how do insects use their antennae to communicate, and what are the specific mechanisms involved? Scientists have discovered that insect antennae are equipped with a variety of specialized sensors, including mechanoreceptors, chemoreceptors, and thermoreceptors, which allow them to detect vibrations, smells, and temperature changes in their environment. One of the leading researchers in the field of antennation is Dr. Gene Robinson, a professor of entomology at the University of Illinois at Urbana-Champaign. Dr. Robinson has made significant contributions to our understanding of how bees use antennation to communicate with one another, and has even identified specific genes that are involved in this process. Another important figure in the field of antennation is Dr. Jocelyn Millar, a professor of entomology at the University of California, Riverside. Dr. Millar's research focuses on the chemical signals that are used in insect communication, and he has made important discoveries about the role of pheromones in this process. Studying antennation can help us better understand how insects interact with each other and with their environment, and can have important implications for fields such as agriculture and pest control. It also opens up new avenues for scientific discovery and innovation.
Learning about the chemistry of onions may not seem like the most exciting academic topic, but it can help you understand how things work in the world around you. When you chop an onion, you're changing its chemistry and releasing a gas that causes your eyes to water. You can slow down the onion's enzymes by storing it in the fridge or boiling it briefly, or you can wear goggles or sunglasses while cutting it. Scientists are even working on creating tear-free onions through genetic modification and traditional plant breeding. Learning about the chemistry of onions can help you appreciate the complexities of the natural world and give you practical skills for your everyday life.
Are you tired of buying avocados only to have them turn brown and mushy before you can even enjoy them? Well, researchers at ACS Food Science & Technology have found a solution! They have developed a chitosan-based coating that can preserve avocados for longer periods, and even created an imaging technique to predict their shelf life. Read the full article to learn more about how this coating can improve the quality and shelf life of avocados, and say goodbye to wasted money and spoiled guacamole.
Are you a steak lover looking to grill the perfect steak? Science has some answers! Meat scientists have spent whole careers studying how to produce the tenderest, most flavorful beef possible. From choosing the right cut of meat to the perfect cooking temperature and time, there are many variables to consider. Did you know that the amount of marbling and the composition of fatty acids in the meat affect its flavor? Or that the Maillard reaction creates roasty, nutty flavors that steak aficionados crave? Read on to learn more about the science behind grilling the perfect steak.
Plants have been evolving for millions of years and have developed incredible adaptations to survive in their environments. One of the most impressive adaptations is drought resistance. In this write-up, we will explore the fascinating world of plant evolution and the incredible ways that plants have adapted to survive in dry environments. Did you know that there are plants that can survive without water for years? The cactus is one such plant that has developed unique adaptations to survive in the harsh desert environment. Its thick stems store water, and its shallow roots can quickly absorb moisture when it rains. The cactus also has small leaves that reduce water loss through transpiration and spines that provide shade to the stem, reducing water loss even further. Another interesting example of drought resistance in plants is the succulent. Succulents store water in their leaves, which become plump when water is available and shrink when water is scarce. They also have shallow roots that spread widely to quickly absorb moisture when it rains. Leading academics in the field of plant evolution and drought resistance have made significant contributions to our understanding of these adaptations. For example, Dr. Christine A. Beveridge has studied the molecular mechanisms behind drought resistance in plants and have identified genes that play a crucial role in this process. Her work has led to the development of drought-resistant crops, which have the potential to improve food security in dry regions. In conclusion, the world of plant evolution and drought resistance is full of fascinating facts, stories, and examples. By exploring this topic independently, students can deepen their understanding of the amazing adaptations that plants have developed over millions of years to survive in their environments.
Fungi are more than just pizza toppings or irritants like athlete's foot. They are a distinct life-form that plays a vital role in the health of our planet. Fungi can absorb oil spills, control insects' brains, and produce life-saving medicines like penicillin. They are also eco-warriors, essential to healthy soil and trapping CO2, potentially solving global warming on their own. Fungi are neither plant nor animal, but are genetically closer to animals than plants. They form dense fungal networks called mycelium, which plants use to communicate with each other. Fungi can also employ other organisms, like leaf-cutter ants, to do their work for them. Fungi are fascinating and adaptable, and there is still much we have yet to learn about them. By exploring the world of fungi, you can become a real fun-guy at parties and gain a deeper understanding of the world around you.
Chemical reactions are essential to life and the world around us. From the simple process of combustion to the complex reactions that occur in living organisms, chemical reactions are constantly happening all around us. But have you ever wondered what happens on a molecular level during a chemical reaction? In this write-up, we will investigate the dynamics of chemical reactions and explore the fascinating world of molecules in motion. At the heart of every chemical reaction are the molecules involved. Molecules are constantly in motion, vibrating and colliding with one another. During a chemical reaction, the atoms in these molecules rearrange themselves to form new substances. This rearrangement is driven by the energy released or absorbed during the reaction. Chemical reactions can be classified based on the types of molecules involved and the way in which the atoms rearrange themselves. For example, in an oxidation-reduction reaction, one molecule loses electrons while another gains electrons. In an acid-base reaction, a proton (H+) is transferred from one molecule to another. One of the key factors that influence the dynamics of a chemical reaction is the activation energy. This is the minimum amount of energy required for a reaction to occur. Once the activation energy is overcome, the reaction can proceed spontaneously. The rate at which a reaction proceeds is also affected by other factors such as temperature, concentration, and the presence of a catalyst. Over the years, many leading scientists have made significant contributions to our understanding of chemical reactions. For example, in the early 20th century, Max Bodenstein developed the concept of reaction rates and showed that chemical reactions could be treated quantitatively. Later, Linus Pauling developed the concept of electronegativity, which explains how atoms bond to one another. In conclusion, the dynamics of chemical reactions and the motion of molecules are fundamental to our understanding of the world around us. By exploring this topic further, students can gain a deeper appreciation for the complexity and beauty of the chemical world.
Activities
People and Organizations