Article
More like this
How do we grow seedless fruit? Discover the fascinating history and science behind hybridization and grafting, and the latest genetic research that could lead to new seedless varieties. From Navel oranges to mutant sugar apples, explore the world of fruit breeding.
What if you could grow your own fruit at home, filling the same space as a Nespresso machine, but with fresh berry cells that are impossible to cultivate using traditional means? That’s the question that Lauri Reuter and his colleagues at VTT Technical Research Centre of Finland are exploring with their innovative project: a "home bioreactor" that produces plant cell cultures that can be eaten in a delicious form. With the potential to grow highly nutritious plants that are currently impossible to cultivate for food, this project could expand the human diet and help promote good conservation practices.
Plants have been evolving for millions of years and have developed incredible adaptations to survive in their environments. One of the most impressive adaptations is drought resistance. In this write-up, we will explore the fascinating world of plant evolution and the incredible ways that plants have adapted to survive in dry environments. Did you know that there are plants that can survive without water for years? The cactus is one such plant that has developed unique adaptations to survive in the harsh desert environment. Its thick stems store water, and its shallow roots can quickly absorb moisture when it rains. The cactus also has small leaves that reduce water loss through transpiration and spines that provide shade to the stem, reducing water loss even further. Another interesting example of drought resistance in plants is the succulent. Succulents store water in their leaves, which become plump when water is available and shrink when water is scarce. They also have shallow roots that spread widely to quickly absorb moisture when it rains. Leading academics in the field of plant evolution and drought resistance have made significant contributions to our understanding of these adaptations. For example, Dr. Christine A. Beveridge has studied the molecular mechanisms behind drought resistance in plants and have identified genes that play a crucial role in this process. Her work has led to the development of drought-resistant crops, which have the potential to improve food security in dry regions. In conclusion, the world of plant evolution and drought resistance is full of fascinating facts, stories, and examples. By exploring this topic independently, students can deepen their understanding of the amazing adaptations that plants have developed over millions of years to survive in their environments.
Pesticides not targeted at flowers may pose a hidden threat to pollinators, according to new research from Trinity and DCU. The study, the first of its kind in Ireland, found residues of several pesticides in the nectar and pollen of both crop and wild plants, with some chemicals lingering for years after application. The findings have implications for the health of bees and other pollinators, as well as for ecosystem function, crop production, and human health.
Wine has been around for thousands of years, and its popularity continues to grow around the world. But have you ever wondered how wine is made? From vine to bottle, the process of winemaking involves a complex series of chemical reactions and physical transformations. In this write-up, we'll explore the science behind winemaking and the key factors that influence wine quality. First, let's start with the grapes. The type of grape used and its ripeness level are crucial factors in determining the final flavor profile of the wine. During the fermentation process, yeast consumes the natural sugars in the grape juice and produces alcohol and carbon dioxide. This is where the bubbles in sparkling wines like champagne come from. The next step is aging, which can take place in oak barrels or stainless steel tanks. This is where the wine develops its characteristic flavor and aroma. Over time, the wine will go through chemical reactions that change its chemical composition, resulting in a smoother and more complex taste. Some of the key chemical compounds that contribute to the flavor of wine include tannins, which are responsible for the dry, astringent taste in red wine, and esters, which give wine its fruity aroma. Other important factors in winemaking include temperature, pH levels, and the use of additives such as sulfites. Leading academics in the field of wine science, such as Dr. Andrew Waterhouse of UC Davis and Dr. Linda Bisson of UC Davis, have contributed greatly to our understanding of the complex chemical processes involved in winemaking. Their research has helped in improving wine quality and consistency, as well as creating relevant regulations around wine production. The possibilities are endless when it comes to exploring the science of wine, so grab a bottle and get started!
Genetic modification is a fascinating and controversial topic that has been around for thousands of years. People have been selectively breeding plants and animals to create desirable traits, such as the transformation of the tropical grass Teosinte into the delicious corn we eat today. However, modern technology has allowed scientists to manipulate DNA with speed and precision, creating genetically modified foods that can resist pests or produce antifreeze proteins from fish. While some people are concerned about the safety of these foods, they have all been thoroughly tested. Learning about genetic modification can help us understand the science behind our food and the potential benefits and risks associated with it. It's an exciting area of study that can inspire us to think critically about the world around us and the impact of technology on our lives.
The making of chocolate is a primitive and unpredictable process involving wild rainforest insects, fungi, and microbes. Discover how the microbiome of cacao trees, tiny midges, and fermentation contribute to the $110-billion chocolate industry. Learn how researchers are working to standardize cacao-making and develop cacao-fermentation "starters."
Understanding the science behind the changing colors of leaves in the fall is not only fascinating but also important for our understanding of the natural world around us. The process is triggered by less daylight, causing the old chlorophyll to disappear and yellow and orange pigments to become visible. The intensity of the colors is connected to temperature, and the drier autumn weather triggers a hormone telling the tree to drop its leaves. Evergreens have a waxy coating and contain a chemical like anti-freeze to survive the winter. By learning about these concepts, students can gain a deeper appreciation for the natural world and develop critical thinking skills. Additionally, understanding the science behind fall leaves can inspire students to explore other scientific topics and engage in self-directed projects.
Wagyu beef is a luxury food item that is known for its high price tag and exquisite taste. But what is it exactly, and why is it so expensive? In this write-up, we'll explore the different grades and cuts of wagyu beef, the science behind its unique taste, and the reasons for its high price. Firstly, let's clarify what wagyu beef actually is. Wagyu is a breed of cattle originating from Japan, known for its high level of marbling and rich flavor. It's important to note that not all wagyu beef is created equal - the highest quality wagyu comes from Japan and is known as "Kobe beef." However, there are also wagyu breeds and farms located in other parts of the world, such as Australia and the United States. One of the reasons why wagyu beef is so expensive is because of the rigorous standards that must be met in order for it to be labeled as such. For example, in Japan, only cattle that are born, raised, and slaughtered in the Hyogo prefecture can be considered true Kobe beef. Additionally, the grading system for wagyu beef is much stricter than for other types of beef, with only the top grades receiving the coveted "A5" rating. But what about the taste? Many people claim that wagyu beef has a superior taste to other types of beef, but is this scientifically true? According to studies, there are a few factors that contribute to the unique flavor of wagyu beef. Firstly, the high level of marbling in wagyu beef leads to a higher concentration of intramuscular fat, which contributes to its tender and juicy texture. Additionally, the Maillard reaction - a chemical reaction that occurs when meat is cooked at high temperatures - is more pronounced in wagyu beef, leading to a richer, more complex flavor. Leading academics in the field, such as Dr. Craig W. Morris, have conducted extensive research on wagyu beef and its unique characteristics. They have also studied the impact of various factors, such as feed and genetics, on the quality and taste of wagyu beef. In conclusion, wagyu beef is a truly unique and fascinating food item that has captured the attention of food lovers around the world. Its high price tag and exquisite taste are a result of a complex interplay of factors, from genetics and feed to cooking techniques and grading standards. By delving deeper into the academic topics related to wagyu beef, students can gain a deeper understanding and appreciation for this truly remarkable food.
Have you ever wondered what goes into creating a beautiful garden or a lush forest? Do you have a fascination for the natural world and a passion for plants? If so, a career in Botany might be the perfect fit for you! Botanists are scientists who study plants and their relationship with the environment. They explore the biology, ecology, and evolution of plants, including their structure, function, and distribution. Botanists play a crucial role in understanding and preserving the natural world, as well as developing new medicines, crops, and other products. As a Botanist, you could work in a variety of settings, from research labs and botanical gardens to national parks and conservation organizations. You might specialize in areas such as plant genetics, ecology, or biotechnology, or focus on specific types of plants, such as trees, flowers, or algae. Typical duties of a Botanist might include conducting field research, analyzing data, writing reports and articles, teaching and mentoring students, and collaborating with other scientists and professionals. You might also work on projects related to climate change, biodiversity, or sustainable agriculture, among other topics. To become a Botanist, you'll typically need a bachelor's degree in Botany, Biology, or a related field. Popular undergraduate programs and majors include Plant Science, Horticulture, Environmental Science, and Biochemistry. You may also choose to pursue a graduate degree for advanced research or teaching opportunities. Helpful personal attributes for a career in Botany include curiosity, creativity, attention to detail, and a passion for learning. You should also have strong analytical and communication skills, as well as the ability to work independently and as part of a team. Job prospects for Botanists are generally good, with opportunities in both the public and private sectors. Some notable potential employers include the United States Department of Agriculture, the National Park Service, the Smithsonian Institution, and private biotechnology companies. So if you're interested in a career that combines your love of plants with scientific inquiry and environmental stewardship, consider becoming a Botanist. Your work could make a real difference in the world and inspire others to appreciate the beauty and complexity of the natural world.
Food is energy for the body, and the average number of calories in fat, protein, and carbohydrates is still used as an important marker for nutrition today. However, biologist Rob Dunn explains that there is no such thing as an average food or person. How many calories we extract from food depends on the biology of the species we are eating, how we cook and process our food, and even on the different bacterial communities in different people's guts. Standard calorie counts don't take any of these factors into consideration, resulting in numbers that are slightly inaccurate, at best, and sometimes rather misleading. Digestion turns out to be such a messy affair that we'll probably never have precise calorie counts for all the different foods we'd like to eat and prepare in so many different ways. However, learning about the biology of food and digestion can help us make better choices and understand our bodies better.
When it comes to seaweed, most people think of sushi. However, seaweed has been consumed by coastal communities for thousands of years and is a staple in many cultures worldwide. Apart from its taste, seaweed is also loaded with nutrients such as iodine, calcium, and iron. In recent years, seaweed has gained popularity in the food industry due to its versatility and sustainability. From sushi to smoothies, here's a closer look at the versatility of seaweed in the kitchen. Seaweed is a type of marine algae that comes in different shapes, sizes, and colors. There are three main types of seaweed: brown, red, and green. Each type has its unique flavor and texture. For example, nori, which is commonly used in sushi, is a type of red seaweed that has a slightly sweet and nutty flavor. Kelp, which is a type of brown seaweed, has a crunchy texture and a mild flavor that pairs well with seafood. Apart from its taste, seaweed has several health benefits. For instance, seaweed is low in calories and high in fiber, making it an excellent addition to any diet. It's also rich in vitamins and minerals such as calcium, iodine, and iron, which are essential for healthy bones, thyroid function, and red blood cell production. Moreover, some studies suggest that seaweed may have anti-inflammatory and anti-cancer properties. In addition to its nutritional benefits, seaweed is also a sustainable food source. Unlike land-based crops, seaweed doesn't require any fertilizers, pesticides, or freshwater to grow. Seaweed also absorbs carbon dioxide from the atmosphere, which helps to mitigate climate change. Moreover, seaweed can be farmed in the ocean without taking up valuable land resources, making it an excellent alternative to traditional agriculture. Leading academics in the field of seaweed research include Dr. Craig Rose from the University of Copenhagen, who has conducted extensive research on the nutritional benefits of seaweed, and Dr. Charles Yarish from the University of Connecticut, who is a pioneer in seaweed aquaculture and has developed sustainable farming methods for seaweed. Seaweed is a fascinating and versatile ingredient that has a lot to offer in terms of taste, nutrition, and sustainability. Whether you're a sushi lover or a smoothie enthusiast, there's a seaweed dish out there for everyone. So why not give it a try?
Have you ever considered how the loss of agrobiodiversity affects our food and agriculture? Discover how the standard American diet has evolved in the last 45 years and how our love of cheese has contributed to a whopping 20 additional pounds in total fat we eat each year. Learn about the reduction of diversity in our food supply and how it affects our ability to feed ourselves. Explore the global standard diet and the impact of standardization on our food and taste.
Pollinators, such as bees and butterflies, are essential to our planet's biodiversity. They facilitate the reproduction of flowering plants, which in turn support other wildlife and contribute to the overall health of ecosystems. Sadly, pollinators face numerous threats, including habitat loss, pesticides, and climate change. In this write-up, we'll explore the vital role of pollinators in biodiversity conservation, as well as the challenges they face. First, let's define biodiversity. It refers to the variety of life on Earth, including different species, ecosystems, and genetic diversity within species. Pollinators play a crucial role in maintaining this diversity by helping plants reproduce. Over 75% of the world's food crops depend on pollinators, and they also support the growth of wildflowers and other plants that provide habitat for other animals. But pollinators are in trouble. According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), over 16% of vertebrate pollinators, such as birds and bats, are threatened with extinction. In addition, around 40% of invertebrate pollinator species, such as bees and butterflies, are facing the same fate. One leading academic in this field is Dr. Dave Goulson, a professor of biology at the University of Sussex. He has conducted extensive research on the importance of pollinators and the threats they face. In his book, "The Garden Jungle," he emphasizes the role of urban gardens in supporting pollinators and other wildlife. Another academic, Dr. Rachael Winfree from Rutgers University, has studied the impact of habitat fragmentation on pollinator communities. Her research shows that smaller patches of habitat can still support pollinators, but it's crucial to have a diversity of plants and habitats available. So, what can we do to help pollinators? There are many actions we can take, from planting pollinator-friendly gardens to reducing pesticide use. We can also support organizations that work to protect pollinators, such as the Xerces Society and the Pollinator Partnership. In conclusion, pollinators play a vital role in maintaining biodiversity, but they face numerous threats. By learning more about pollinators and taking action to protect them, we can help to ensure a healthy and diverse planet for future generations.
In just 70 years, the UK's landscape has undergone drastic changes, with non-native species thriving and native plants dwindling due to modern agriculture and climate change. The Plant Atlas 2020, produced by the Botanical Society of Britain and Ireland, reveals the catastrophic loss of grasslands, heathlands, and other habitats that would shock those brought up in the 1950s. The survey also highlights the impact of climate change on plant life and calls for stronger laws and sustainable land management to protect flora. Sir David Attenborough presents a new BBC documentary, Wild Isles, on the subject.
Have you ever heard of growing plants without soil? It's possible with hydroponics and aquaponics! These innovative methods of agriculture have gained popularity in recent years for their ability to produce high yields of fresh produce while using less space, water, and pesticides than traditional farming. In this write-up, we'll explore the fascinating world of hydroponics and aquaponics, diving into the concepts, benefits, and contributions from leading academics in the field. Hydroponics is the practice of growing plants in nutrient-rich water instead of soil. This method can be done in a variety of ways, from a simple jar with water and plant roots to complex systems using pumps, pipes, and controlled environments. Aquaponics takes it a step further by combining hydroponics with fish farming. In this closed-loop system, fish waste provides nutrients for plants, while plants naturally filter and clean the water for the fish. Did you know that hydroponics and aquaponics can yield up to 10 times more produce than traditional farming methods? This is because the plants receive precisely the nutrients they need, and water is recycled efficiently. Additionally, these methods can be done year-round, in any climate, and with less land space. It's no wonder that hydroponics and aquaponics are gaining attention from both commercial farmers and hobbyists alike. One leading academic in this field is Dr. Dickson Despommier, a professor at Columbia University. He's written extensively on vertical farming, an innovative form of agriculture that takes hydroponics to new heights by stacking layers of plants vertically. Another notable academic is Dr. Rakocy from the University of the Virgin Islands, who pioneered the development of modern aquaponics in the 1980s. In conclusion, hydroponics and aquaponics offer an innovative and sustainable solution to traditional farming methods. With its ability to produce more fresh produce with less resources, it's no wonder why this field is gaining traction. By exploring this topic further, you can discover new and exciting ways to apply academic concepts to real-world problems.
Are you fascinated by the beauty of orchids? Did you know that the modern fascination with orchids may have begun with an accident? A shipment of plants from Brazil back to England in 1818 contained weeds that later bloomed into gorgeous purple flowers, triggering an acquisition frenzy known as an "orchidelirium." In this fascinating article from Smithsonian Magazine, discover how orchids have captivated humans for centuries, and how institutions like the Smithsonian are working to conserve endangered species like the Angraecum longicalcar.
Fungi are more than just pizza toppings or irritants like athlete's foot. They are a distinct life-form that plays a vital role in the health of our planet. Fungi can absorb oil spills, control insects' brains, and produce life-saving medicines like penicillin. They are also eco-warriors, essential to healthy soil and trapping CO2, potentially solving global warming on their own. Fungi are neither plant nor animal, but are genetically closer to animals than plants. They form dense fungal networks called mycelium, which plants use to communicate with each other. Fungi can also employ other organisms, like leaf-cutter ants, to do their work for them. Fungi are fascinating and adaptable, and there is still much we have yet to learn about them. By exploring the world of fungi, you can become a real fun-guy at parties and gain a deeper understanding of the world around you.
Discover the fascinating world of seeds with this award-winning book that takes you on a journey through their natural and human history. From the nutmeg and pepper that drove the Age of Discovery to the coffee beans that fueled the Enlightenment, seeds have played a crucial role in shaping diets, economies, and civilizations around the globe. Through the eyes of a field biologist and the charm of a fireside storyteller, explore the beauty, wonder, and evolutionary marvels of seeds that are often overlooked. Essential reading for anyone who loves to see a plant grow. Recommended for botanists, environmentalists, farmers, historians, and anyone curious about the natural world, this book offers a unique perspective on the often-overlooked importance of seeds. It delves into the historical, cultural, and economic significance of seeds, showing how they have shaped human societies and impacted global events. The book also offers a scientific exploration of the biology and ecology of seeds, making it relevant to students and professionals in fields such as botany, biology, and agriculture. Overall, this book offers a captivating and informative read for anyone interested in the wonders of the natural world.
Are fast-lived species taking over the world? Recent research published in Global Change Biology found that fast-lived animals are increasing in numbers while slow-lived animals are in decline, especially in areas of rapid cropland or bare soil expansion. The study raises important questions about how human actions are rewiring natural ecosystems and the far-reaching effects on the natural world.
Activities
Academic Extensions
Thought Experiments