Article
More like this
A team of researchers from UCLA has developed a new remote diagnostic technique that overcomes bias against darker skin tones in heart rate measurements. By combining the light-based measurements of a camera with radio-based measurements from radar and refining them through machine learning, the new technique improves the accuracy and fairness of heart rate readings for patients across a wide variety of skin tones. The study's findings, recently published in the journal ACM Transactions on Graphics, offer a promising path toward achieving more accurate and equitable remote technologies that can be used to remotely monitor patients both in clinical settings and from patients’ homes.
Blindness doesn't stop people from having interests, passions, and desires. In fact, losing one sense can lead to a sharpening of others, as blind people learn to rely on their hearing, touch, and other senses. They still care about their appearance, their love for shopping, and still have hobbies like makeup and beauty. Blind people can work and lead fulfilling lives, and they appreciate kindness and support from others. As a student, learning about different experiences and perspectives can broaden your understanding of the world and help you develop empathy and respect for others. Exploring academic topics related to disability and accessibility can also prepare you for a more inclusive and equitable future, whether you pursue a career in medicine, technology, or social justice.
Stanford researchers have developed a smart bandage that painlessly falls away from the skin and tracks signs of recovery and infection. It even responds with electrical stimulation to hasten healing. The bandage resulted in 25% faster healing, greater blood flow to injured tissue, and less scarring in animal studies. The bandage is just one example of how Stanford researchers combine organic chemistry and novel materials to reimagine medical devices in more powerful, personal, and unobtrusive ways.
Are you fascinated by the inner workings of the human body and want to play a crucial role in diagnosing and treating illnesses? Look no further than the field of radiography! Radiography is the study of medical imaging, using X-rays, CT scans, MRIs, and other techniques to create images of the body's internal structures. It's a vital field that helps doctors detect and diagnose a wide range of medical conditions, from broken bones to cancer. In recent years, radiography has seen some exciting innovations and breakthroughs. For example, researchers are exploring the use of AI and machine learning to improve the accuracy and speed of medical imaging. And new techniques like 3D printing are allowing doctors to create custom implants and prosthetics for their patients. At the undergraduate level, students can expect to take courses in anatomy, physiology, medical terminology, and of course, radiographic imaging techniques. Many programs also offer clinical rotations, giving students hands-on experience working with patients and medical professionals. After graduation, there are a wide range of career paths available to radiography majors. Some graduates go on to become radiologic technologists, performing diagnostic imaging procedures like X-rays and CT scans. Others become radiation therapists, using radiation to treat cancer and other diseases. And still others go on to become medical physicists, working to develop and improve medical imaging technology. There are many potential employers for radiography graduates, including hospitals, clinics, and private imaging centers. Some notable examples include the Mayo Clinic, Johns Hopkins Hospital, and Memorial Sloan Kettering Cancer Center. To succeed in radiography, students should have a strong background in science and math, as well as excellent communication skills and attention to detail. If you're passionate about healthcare and interested in a challenging and rewarding career, radiography may be the perfect field for you.
Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, making it easier for patients to receive the medicine they need to manage their symptoms. But how do these devices work, and what scientific principles underlie their design? At the heart of an inhaler is the aerosol, a fine mist of medication that is delivered directly to the lungs. To create this mist, inhalers use a propellant, which expands rapidly upon release, creating a burst of pressure that forces the medication out of the device and into the airways. One key challenge in designing inhalers is ensuring that the aerosol particles are small enough to be easily inhaled, yet large enough to deposit effectively in the lungs. This is where the science of aerodynamics comes into play, as researchers work to optimize the shape and size of the particles to achieve the ideal balance of delivery efficiency and patient comfort. Recent advancements in inhaler technology have led to the development of smart inhalers, which use sensors and digital connectivity to monitor patient use and provide personalized feedback and reminders. This innovation has the potential to improve patient adherence and outcomes, and is just one example of how inhaler delivery systems continue to evolve and improve. Leading academics in the field include Dr. Richard Costello, a respiratory physician and clinical scientist at the Royal College of Surgeons in Ireland, and Dr. Omar Usmani, a consultant physician in respiratory medicine at the Royal Brompton Hospital and professor of respiratory medicine at Imperial College London. These experts have contributed to important research on inhaler technology and the treatment of respiratory diseases, and continue to drive innovation in the field. Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, allowing patients to manage their symptoms with greater ease and precision. By understanding the science behind aerosol medicine and the principles that underlie inhaler design, we can appreciate the incredible innovation that has made this possible.
Electronic waste is not just trash, it's a treasure trove of precious metals like gold! Researchers at the University of Cagliari and Imperial College London have found a way to extract gold from electronic waste and use it as a catalyst in making medicines. This not only prevents gold from being lost in landfills but also reduces our dependence on environmentally harmful mining practices.
Scotland has become the first country to ban desflurane, an anaesthetic gas with a global warming potential 2,500 times greater than carbon dioxide, from its hospitals due to its environmental threat. The move would cut emissions equivalent to powering 1,700 homes a year. UK hospitals have already cut down, with over 40 hospital trusts in England and some in Wales having stopped using it. NHS England will introduce a similar ban from 2024. Anaesthetists have switched to safer alternatives, but more needs to be done to reduce the NHS's carbon footprint.
Are you fascinated by the power of the atom? Do you want to be part of the solution to the world's energy crisis? Then Nuclear Engineering might just be the field for you! Nuclear Engineering is a dynamic and exciting field that involves the study of nuclear reactions and their applications. From designing nuclear power plants to developing radiation treatments for cancer, Nuclear Engineering has a wide range of real-world applications that can make a meaningful impact on society. In recent years, there have been many exciting developments in Nuclear Engineering. For example, scientists have been working on developing nuclear fusion as a clean and sustainable energy source. There have also been exciting advancements in the field of nuclear medicine, including the development of targeted radiation therapies for cancer. At the undergraduate level, typical majors in Nuclear Engineering include courses in nuclear physics, reactor design, and radiation protection. Students can also choose to specialize in areas such as nuclear materials or nuclear fuel cycle. The potential career paths for graduates in Nuclear Engineering are diverse and exciting. Graduates can find work in industries such as nuclear power generation, nuclear medicine, and nuclear waste management. Some notable employers in the field include the International Atomic Energy Agency, General Electric, and the US Department of Energy. To succeed in Nuclear Engineering, students should have a strong background in mathematics and physics. They should also be curious, analytical, and detail-oriented. So, if you're ready to explore the fascinating world of nuclear reactions and their applications, consider studying Nuclear Engineering at the undergraduate level. The possibilities are endless!
How can urban planning decisions impact health? A new tool evaluates factors like green spaces and air pollution to assess potential health effects.
Decades after nuclear testing, downwinders are still experiencing the devastating effects of radioactive fallout. As the possibility of a return to testing looms, National Geographic explores the impact of the U.S.'s atomic age and the risks of a new nuclear arms race.
Have you ever had a moment of inspiration that led to a groundbreaking invention? In 1816, a doctor named René Laennec had just that moment while walking through Paris. He observed children using a long piece of wood to amplify sound and later used this concept to create the stethoscope. By placing a rolled-up sheet of paper to a young woman's chest, he was able to hear her heartbeat with clarity. Laennec spent three years perfecting his invention, which eventually became the forerunner to the stethoscopes we still use today. Learning about the development of the stethoscope not only expands your knowledge of medical history but also inspires you to think creatively and use everyday observations to solve complex problems.
Waste management is an essential aspect of public health, and it has a long and fascinating history. From ancient Roman public latrines to modern wastewater treatment plants, the evolution of toilets and sewage systems has been pivotal in preventing the spread of dangerous microorganisms that cause cholera, dysentery, and typhoid. Learning about the history of waste management is not only intellectually stimulating but also practically important for understanding the importance of proper sanitation. While modern toilets have a wide range of features, billions of people around the world still lack access to proper sanitation facilities, putting them at risk of disease. By studying the history of waste management and developing new sanitation technologies, we can address the behavioral, financial, and political issues that produce inequity throughout the sanitation pipeline and improve public health for all.
From the dizzying heights of tightrope walking, we can learn the secrets of balancing and defying gravity. Sonja Harpstead, a tightrope instructor in New York, explains that posture is the key to success, and lowering your center of gravity towards the wire is crucial. By understanding the physics of the human body, tightrope walkers use rotational inertia to keep their balance and carry a long balancing pole to lower their center of gravity even further. Beyond entertainment, research in this area could have healthcare implications, including detecting early muscle degradation in elderly patients and building strength and balance with physical therapy exercises. Take a step into the physics of tightrope walking today!
Are you the type of person who loves to build and design machines? Do you enjoy figuring out how things work and finding innovative solutions to complex problems? Then a career in mechanical engineering may be the perfect fit for you! Mechanical engineering is a diverse and exciting field that involves the design, development, and manufacturing of a wide range of machines and mechanical systems. From designing high-performance cars and airplanes to creating advanced medical equipment, mechanical engineers play a crucial role in shaping the world around us. One of the most exciting aspects of a career in mechanical engineering is the opportunity to work on projects that can have a real impact on people's lives. For example, you might be involved in the development of medical devices that save lives, or in creating new renewable energy sources that help to protect the environment. As a mechanical engineer, you can work in a variety of industries, including automotive, aerospace, energy, and healthcare. Some common duties may include designing and testing new products, analyzing data to improve existing systems, and collaborating with other engineers and professionals to solve complex problems. There are also many areas of specialization within mechanical engineering, such as robotics, materials science, and nanotechnology. By choosing a specialization, you can focus on a specific area of interest and become an expert in that field. To become a mechanical engineer, you will typically need a bachelor's degree in mechanical engineering or a related field. Popular undergraduate programs and majors include mechanical engineering, aerospace engineering, and materials science. Helpful personal attributes for a career in mechanical engineering include strong problem-solving skills, creativity, attention to detail, and a passion for innovation. The job prospects for mechanical engineers are generally positive, with opportunities in both the public and private sectors around the world. Some notable employers in the field include General Electric, Boeing, and BMW.
Uncover the Divine Power of Artificial Intelligence: Meet Sybil, the new AI tool for predicting lung cancer risk developed by researchers at MIT, Mass General Cancer Center and Chang Gung Memorial Hospital.
Are you tired of feeling hot and sticky during the summer months? Look no further than Japan, where a dizzying array of personal cooling products are being sold to combat the country's hot and humid summers. From menthol and eucalyptus-based face masks to wearable fans and cooling vests, the Japanese market has something for everyone. But with rising temperatures and energy concerns, the need for more energy-efficient air conditioning and renewable energy sources is becoming increasingly pressing. Learn more about the innovative ways Japan is tackling its heatwave problem in this fascinating article from BBC.
Are you looking for a career that offers excitement, challenges, and the opportunity to serve your country? Then a career in Military Service might just be the perfect fit for you! In Military Service, you'll have the chance to work in a variety of roles, from combat to logistics, and everything in between. You'll be part of a team that is dedicated to protecting your country and its citizens, and you'll have the chance to make a real difference in the world. As a member of the military, you'll be responsible for a wide range of duties, depending on your role and area of specialization. Some of the most common duties include training and preparing for combat, providing logistical support to troops in the field, and performing humanitarian missions around the world. If you're interested in pursuing a career in Military Service, there are a variety of educational and training options available to you. Many military careers require a high school diploma or equivalent, while others may require a college degree in a specific field, such as engineering or medicine. Some popular undergraduate programs and majors for those interested in Military Service include ROTC programs, engineering, computer science, nursing, and international relations. In addition to the right education and training, there are a number of personal attributes that can help you succeed in a career in Military Service. These include a strong sense of discipline, physical fitness, leadership skills, and a willingness to work hard and take on new challenges. So if you're looking for a career that offers excitement, challenge, and the chance to make a real difference in the world, consider a career in Military Service. With the right education, training, and personal attributes, you can succeed in this exciting and rewarding field.
Electricity is a fundamental part of modern life, but could too much of it be harmful? Understanding the movement of electric charges and resulting electromagnetic radiation is key to answering this question. While some radiation, like UV light and X-rays, can be dangerous, most of the radiation emitted by human technology, such as mobile phones and household appliances, is harmless. However, some studies have suggested possible long-term harm from constant exposure to weak electromagnetic radiation. The debate surrounding this issue highlights the importance of reliable scientific studies and responsible communication of findings. Learning about the effects of electromagnetic radiation can help students make informed decisions about their technology use and contribute to ongoing scientific research.
Are you interested in learning about a new antimicrobial coating material that can effectively kill bacteria and viruses, including MRSA and Covid-19? Researchers at the University of Nottingham's School of Pharmacy have used a common disinfectant and antiseptic to create this new material that could be used as an effective antimicrobial coating on a range of plastic products. This new study, published in Nano Select, offers an effective way to prevent the spread of pathogenic microorganisms and address the ever-increasing threat of antimicrobial resistance. Read more to find out how this material was created and how it can help in hospital settings.
Are you aware that over 2 billion people globally drink water contaminated with disease-causing microbes? Stanford University and SLAC National Accelerator Laboratory have developed a low-cost, recyclable powder that can kill thousands of waterborne bacteria per second when exposed to ordinary sunlight. This discovery could be a significant breakthrough for the nearly 30 percent of the world's population without access to safe drinking water. The results of their study are published in Nature Water.