Article
More like this
Genetic modification is a fascinating and controversial topic that has been around for thousands of years. People have been selectively breeding plants and animals to create desirable traits, such as the transformation of the tropical grass Teosinte into the delicious corn we eat today. However, modern technology has allowed scientists to manipulate DNA with speed and precision, creating genetically modified foods that can resist pests or produce antifreeze proteins from fish. While some people are concerned about the safety of these foods, they have all been thoroughly tested. Learning about genetic modification can help us understand the science behind our food and the potential benefits and risks associated with it. It's an exciting area of study that can inspire us to think critically about the world around us and the impact of technology on our lives.
Plants have been evolving for millions of years and have developed incredible adaptations to survive in their environments. One of the most impressive adaptations is drought resistance. In this write-up, we will explore the fascinating world of plant evolution and the incredible ways that plants have adapted to survive in dry environments. Did you know that there are plants that can survive without water for years? The cactus is one such plant that has developed unique adaptations to survive in the harsh desert environment. Its thick stems store water, and its shallow roots can quickly absorb moisture when it rains. The cactus also has small leaves that reduce water loss through transpiration and spines that provide shade to the stem, reducing water loss even further. Another interesting example of drought resistance in plants is the succulent. Succulents store water in their leaves, which become plump when water is available and shrink when water is scarce. They also have shallow roots that spread widely to quickly absorb moisture when it rains. Leading academics in the field of plant evolution and drought resistance have made significant contributions to our understanding of these adaptations. For example, Dr. Christine A. Beveridge has studied the molecular mechanisms behind drought resistance in plants and have identified genes that play a crucial role in this process. Her work has led to the development of drought-resistant crops, which have the potential to improve food security in dry regions. In conclusion, the world of plant evolution and drought resistance is full of fascinating facts, stories, and examples. By exploring this topic independently, students can deepen their understanding of the amazing adaptations that plants have developed over millions of years to survive in their environments.
The making of chocolate is a primitive and unpredictable process involving wild rainforest insects, fungi, and microbes. Discover how the microbiome of cacao trees, tiny midges, and fermentation contribute to the $110-billion chocolate industry. Learn how researchers are working to standardize cacao-making and develop cacao-fermentation "starters."
Have you ever considered how the loss of agrobiodiversity affects our food and agriculture? Discover how the standard American diet has evolved in the last 45 years and how our love of cheese has contributed to a whopping 20 additional pounds in total fat we eat each year. Learn about the reduction of diversity in our food supply and how it affects our ability to feed ourselves. Explore the global standard diet and the impact of standardization on our food and taste.
What if you could grow your own fruit at home, filling the same space as a Nespresso machine, but with fresh berry cells that are impossible to cultivate using traditional means? That’s the question that Lauri Reuter and his colleagues at VTT Technical Research Centre of Finland are exploring with their innovative project: a "home bioreactor" that produces plant cell cultures that can be eaten in a delicious form. With the potential to grow highly nutritious plants that are currently impossible to cultivate for food, this project could expand the human diet and help promote good conservation practices.
Pesticides are ubiquitous in modern agriculture, but their detrimental effects on human health and the environment are becoming increasingly evident. A new approach, called regenerative agriculture, is emerging as a sustainable and healthier alternative. Biological farming practices like those of Tim Parton, a UK farm manager, prioritise soil and environmental health by minimising synthetic inputs, and have led to increased biodiversity and crop yields without the need for harmful chemicals. However, while the environmental and health benefits of regenerative agriculture are clear, the transition away from pesticide-dependent farming remains a challenge for many.
Have you ever heard of growing plants without soil? It's possible with hydroponics and aquaponics! These innovative methods of agriculture have gained popularity in recent years for their ability to produce high yields of fresh produce while using less space, water, and pesticides than traditional farming. In this write-up, we'll explore the fascinating world of hydroponics and aquaponics, diving into the concepts, benefits, and contributions from leading academics in the field. Hydroponics is the practice of growing plants in nutrient-rich water instead of soil. This method can be done in a variety of ways, from a simple jar with water and plant roots to complex systems using pumps, pipes, and controlled environments. Aquaponics takes it a step further by combining hydroponics with fish farming. In this closed-loop system, fish waste provides nutrients for plants, while plants naturally filter and clean the water for the fish. Did you know that hydroponics and aquaponics can yield up to 10 times more produce than traditional farming methods? This is because the plants receive precisely the nutrients they need, and water is recycled efficiently. Additionally, these methods can be done year-round, in any climate, and with less land space. It's no wonder that hydroponics and aquaponics are gaining attention from both commercial farmers and hobbyists alike. One leading academic in this field is Dr. Dickson Despommier, a professor at Columbia University. He's written extensively on vertical farming, an innovative form of agriculture that takes hydroponics to new heights by stacking layers of plants vertically. Another notable academic is Dr. Rakocy from the University of the Virgin Islands, who pioneered the development of modern aquaponics in the 1980s. In conclusion, hydroponics and aquaponics offer an innovative and sustainable solution to traditional farming methods. With its ability to produce more fresh produce with less resources, it's no wonder why this field is gaining traction. By exploring this topic further, you can discover new and exciting ways to apply academic concepts to real-world problems.
Discover the fascinating history behind the painstaking hand-pollination process of vanilla, the world's second most expensive spice. Learn how the enslaved boy Edmond Albius developed the method that is still in use today and the challenges faced by farmers in cultivating and processing this beloved flavor. Explore how vanilla has become one of the most lucrative spices in existence, with an insatiable demand from consumers worldwide.
How do we grow seedless fruit? Discover the fascinating history and science behind hybridization and grafting, and the latest genetic research that could lead to new seedless varieties. From Navel oranges to mutant sugar apples, explore the world of fruit breeding.
Do you know where your food comes from? In 'The Omnivore's Dilemma: A Natural History of Four Meals', Michael Pollan takes you on a journey from the industrial food complex to foraging in the wild, revealing the hidden costs of our modern food systems. As you follow each food chain, you'll learn how our eating choices impact not only our own health but also the health of the environment. Pollan's insightful exploration of our relationship with food will make you question everything you thought you knew about what's on your plate. Recommended for anyone interested in food systems, environmental sustainability, health, and ethics. This book is relevant to students interested in fields such as agriculture, biology, nutrition, environmental studies, and ethics. It is also relevant to anyone who cares about the impact of their food choices on their health and the health of the planet. The book challenges readers to think critically about the industrial food complex and consider alternative ways of producing and consuming food that prioritize sustainability and ethical considerations.
Discover the origin of Australia's devastating 'rabbit plague' with new genetic proof! An international team of researchers has finally settled the debate about whether the invasion arose from one source or multiple introductions, tracing the ancestry of Australia's invasive rabbit population back to the South-West of England. Join the journey to uncover the mystery of how a single batch of English rabbits triggered this biological invasion.
Did you know that insects communicate with each other through a complex system of signals and cues? This phenomenon is known as "antennation," and it's a fascinating area of study that has captured the attention of many researchers in the field of entomology. Antennation is the process by which insects use their antennae to sense and interpret chemical and physical signals from their environment and from other insects. For example, ants use antennation to communicate with one another about the location of food sources and potential threats. Bees use antennation to coordinate their movements during foraging, and to communicate with other members of their hive. But how do insects use their antennae to communicate, and what are the specific mechanisms involved? Scientists have discovered that insect antennae are equipped with a variety of specialized sensors, including mechanoreceptors, chemoreceptors, and thermoreceptors, which allow them to detect vibrations, smells, and temperature changes in their environment. One of the leading researchers in the field of antennation is Dr. Gene Robinson, a professor of entomology at the University of Illinois at Urbana-Champaign. Dr. Robinson has made significant contributions to our understanding of how bees use antennation to communicate with one another, and has even identified specific genes that are involved in this process. Another important figure in the field of antennation is Dr. Jocelyn Millar, a professor of entomology at the University of California, Riverside. Dr. Millar's research focuses on the chemical signals that are used in insect communication, and he has made important discoveries about the role of pheromones in this process. Studying antennation can help us better understand how insects interact with each other and with their environment, and can have important implications for fields such as agriculture and pest control. It also opens up new avenues for scientific discovery and innovation.
Seaweed may be the future of sustainable and nutritious food. As the global population continues to grow and traditional agriculture methods take a toll on the environment, seaweed could be a more efficient and eco-friendly option. Researchers are exploring the potential of seaweed not only as a food source, but also as a tool to combat climate change. Companies like Dutch Weed Burger, AKUA, and Umaro Foods are already developing plant-based alternatives to meat and dairy using seaweed, which is high in nutrients and can be grown without land or fresh water.
Pesticides not targeted at flowers may pose a hidden threat to pollinators, according to new research from Trinity and DCU. The study, the first of its kind in Ireland, found residues of several pesticides in the nectar and pollen of both crop and wild plants, with some chemicals lingering for years after application. The findings have implications for the health of bees and other pollinators, as well as for ecosystem function, crop production, and human health.
Are you an animal lover? Do you enjoy learning about the complexities of the natural world and its inhabitants? Then a career in Animal Sciences may be perfect for you! As an Animal Scientist, you will have the opportunity to study and improve the lives of animals, as well as make a positive impact on our planet. Animal Sciences is a broad field that covers various aspects of animal life, from their genetics and nutrition to their behavior and welfare. In this field, you could work in a range of areas such as agriculture, animal behavior, animal welfare, zoology, conservation, and more. Animal Scientists use their knowledge to make informed decisions that promote the well-being of animals, humans, and the environment. Some of the interesting and meaningful aspects of this field include studying the behavior of wild animals, discovering new species, or working to improve the quality of life for domesticated animals. For example, animal scientists can work to develop new methods of farming, breeding, or managing animal health to improve food production and quality. They may also be involved in the development of vaccines or treatments for animal diseases or work to minimize the environmental impact of animal agriculture. There are a variety of potential duties within the field of Animal Sciences, including conducting research, developing new methods of animal management, analyzing animal genetics, developing animal nutrition programs, and more. You may choose to specialize in one particular area, such as animal nutrition or animal behavior, or work in a broader role. To become an Animal Scientist, you will typically need a Bachelor's degree in Animal Science, Biology, Zoology, or a related field. Many universities offer undergraduate programs in Animal Sciences that cover topics such as animal genetics, physiology, nutrition, and welfare. Some popular and relevant undergraduate majors include animal science, veterinary science, biology, and zoology. Helpful personal attributes for this field include a love for animals, strong critical thinking skills, attention to detail, and a desire to continuously learn and improve. Excellent communication and collaboration skills are also important as you may be working in a team with other scientists, veterinarians, and animal handlers. The job prospects for Animal Scientists are strong and continue to grow as the demand for food production and animal welfare increases. There are a range of potential employers in both the public and private sectors around the world, such as research institutions, universities, pharmaceutical companies, zoos and aquariums, government agencies, and private farms. Some notable examples of potential employers include the National Institutes of Health, the World Wildlife Fund, and the Food and Agriculture Organization of the United Nations.
Did you know that approximately 40% of the global fish catch is discarded as bycatch, unintentionally caught fish that are not the target of the fishing operation? This means that a significant amount of fish, which could be used for food and other purposes, is being wasted. Fortunately, researchers and industry leaders are coming up with innovative solutions to turn bycatch into valuable resources. Bycatch can be transformed into fish meal, used as fertilizer, or even turned into high-end seafood products. One of the leading experts in this field is Dr. Daniel Pauly, a fisheries scientist and professor at the University of British Columbia. Dr. Pauly is known for his work on developing methods to estimate global fish catches, and he has also been a vocal advocate for reducing bycatch and promoting sustainable fishing practices. Another academic making significant contributions in this area is Dr. Karin Limburg, a fisheries biologist and professor at the SUNY College of Environmental Science and Forestry. Dr. Limburg has researched the use of bycatch for fertilizer and has found that it can be a valuable source of nutrients for crops. In addition to these experts, industry leaders such as FishWise, a nonprofit seafood sustainability consultancy, are also working to reduce bycatch and promote sustainable fishing practices. They work with major seafood retailers and distributors to improve the sustainability of the seafood supply chain. By exploring this topic further, you can develop a deeper understanding of the complex issues facing our oceans and contribute to finding innovative solutions for a more sustainable future.
Ever wondered why corn has silk? Discover the comically euphemistic explanation from 1915 and learn how the tassel and silk play a crucial role in fertilizing each kernel. Find out the truth behind the mystery and eat your ovaries-on-a-cob while you're at it.
Milk has been a part of the human diet for thousands of years. It is rich in fat, vitamins, minerals and lactose, which is a milk-sugar that helps us grow and protects us from infections. The ability to digest lactose is an adaptation that has spread unevenly across the globe due to natural selection. Despite its nutritional benefits, milk has become a controversial topic due to claims of negative health effects such as cancer, cardiovascular disease, and allergies. However, research suggests that drinking 100-250 milliliters of milk per day does not increase the risk of cancer, heart disease, stroke or total mortality. Harmful amounts of pesticides, antibiotics or hormones are not a concern due to regulations. Milk allergies and lactose intolerance are the best-known negative effects of milk. Understanding the nutritional benefits and potential risks of milk can help students make informed decisions about their diet.
The invasion of purple sea urchins has devastated kelp forests along the coasts of California, Japan, Norway, Canada, and Tasmania, leaving behind barren underwater landscapes that can last for decades. However, a Norwegian company called Urchinomics has a plan to restore kelp forests and create a new fishery for overpopulated urchins through "urchin ranching." Urchin ranching could potentially create a local speciality dining market for purple urchin uni, but it will take an aggressive and thorough approach to remove enough urchins to restore kelp forests.
In today's world, it's easy to take for granted the food we eat and where it comes from. However, understanding the complex supply chain behind the fruits and vegetables we purchase can have significant intellectual and practical benefits. In times of crisis, like during the COVID-19 pandemic, supply chains are stretched thin, and it becomes more important than ever to explore alternative ways of growing food. Enter high-tech urban agriculture, a revolutionary concept that could transform the way we produce and consume food. With vertical farms popping up in cities worldwide, growing crops closer to where they are eaten is becoming a reality. These systems provide numerous benefits, from being healthier and more sustainable to containing no pesticides. By exploring these cutting-edge concepts further, students can gain knowledge about sustainable practices, future technologies, and global supply chains.
Activities
People and Organizations