Article
More like this
Clean water is an essential resource for all life on Earth, and the pursuit of ensuring access to clean water has been a focus of research, policy, and advocacy for decades. In this write-up, we'll explore the history of clean water, the challenges we face, and the progress we've made over time. One of the earliest recorded efforts to ensure clean water was by the ancient Greeks, who built the first aqueducts to transport water to their cities. Fast forward to the present day, and the challenge of ensuring access to clean water remains a pressing issue, with over two billion people lacking access to safe drinking water worldwide. The field of water resources engineering has emerged to address this challenge, with experts working on solutions such as desalination, water treatment, and conservation. One leading academic in this field is Dr. Rita Colwell, who has dedicated her career to researching and preventing waterborne diseases, including cholera. Another key concept in the pursuit of clean water is sustainability, which refers to using resources in a way that meets the needs of the present without compromising the ability of future generations to meet their own needs. This requires balancing economic, environmental, and social factors to ensure that our water resources are managed in a way that is equitable and efficient. One leading scholar in this area is Dr. Peter Gleick, who founded the Pacific Institute, a research organization that focuses on water issues. Despite the ongoing challenges, progress has been made in the field of clean water. For example, the percentage of the global population with access to clean drinking water has increased from 76% in 1990 to 91% in 2015. Additionally, advances in technology and infrastructure have allowed for improved water treatment and distribution, as well as the development of new methods of water conservation. Remember, the pursuit of knowledge is a lifelong journey, and there's always more to discover and learn. By exploring academic topics like clean water, you can broaden your understanding of the world, develop critical thinking skills, and make a positive impact on the world around you.
In a world drowning in plastic waste, a new trend of "zero-waste" supermarkets is taking hold. Live Zero, a Hong Kong-based store, is leading the way by doing away with packaging altogether. From bulk bins of chocolate and dried fruit to solid shampoo bars, customers bring their own containers to fill up on just what they need. Although it presents challenges, this movement is gaining momentum, and could pave the way for new eco-friendly solutions, such as compostable bioplastics and reusable packaging systems. Zero-waste shopping may not replace traditional supermarkets, but it offers a promising path forward in the fight against plastic pollution.
Biomimicry is a fascinating and innovative concept that is changing the way we approach technology and sustainability. Janine Benyus takes readers on a journey through the natural world, where scientists and inventors are drawing inspiration from nature's most successful ideas to revolutionize our world. From creating materials to healing ourselves, Biomimicry shows how we can learn from the genius of the animal kingdom. This book is a must-read for anyone interested in the future of our planet and the exciting possibilities that lie ahead. Recommended for students of biology, engineering, and environmental studies, Biomimicry offers a fresh perspective on how we can learn from nature to solve some of the world's most pressing problems. Professionals in the fields of medicine, architecture, and technology will also find inspiration in the innovative ideas presented in this book. Additionally, anyone interested in sustainability, conservation, and the future of our planet will appreciate the creative solutions and exciting possibilities explored in Biomimicry. Overall, this book is a valuable resource for anyone looking to explore new and innovative approaches to problem-solving.
As we look towards the future, it's clear that our world is changing rapidly. One of the most exciting developments is the emergence of floating nations on the sea. These seascrapers will be built using 3D printed biorock, and will be powered by ocean thermal energy conversion. They will allow us to harvest calcium carbonate directly from seawater, and create vast ocean gardens that will reduce ocean acidity and provide environmentally restorative food. The first to seek jobs on these farms will be the poorest billion on Earth, who will come to the blue frontier because floating societies will require refugees to survive economically. These seasteads will restore the environment, enrich the poor and liberate humanity from politicians. By exploring the depths beneath the ocean, we will unlock new discoveries and opportunities that we can't even imagine yet. So let's embrace this new century of seasteading and explore the oceans first, and the stars next.
Concrete is the most widely used construction material in the world, but it has a weakness: it's prone to catastrophic cracking that costs billions of dollars to repair each year. However, scientists have discovered ways to create concrete that can heal itself. By adding hidden glue or bacteria and fungi spores to the concrete mix, cracks can be repaired up to almost 1mm wide. This technique has the potential to make concrete more resilient and long-lasting, which could drastically reduce the financial and environmental cost of concrete production. Learning about the science behind concrete and its potential for self-healing can not only be intellectually stimulating but also practically beneficial for the future of construction. Imagine being part of the solution to creating more sustainable and durable infrastructure for our cities.
Did you know that the inventor behind Tang Flavor Crystals, Pop Rocks, and Cool Whip was the same person? William A. Mitchell was a Midwestern farm boy turned chemist who revolutionized midcentury America's love affair with convenience foods. His inventions kept soldiers fed during World War II and even made it to space! While some of his creations fell out of favor, his legacy lives on. Explore Mitchell's fascinating journey and innovative creations that shaped American food culture.
Transportation Planning is an exciting and dynamic field that involves designing and implementing transportation systems that are efficient, safe, and sustainable. If you're interested in making a positive impact on the world and helping to shape the way we move around our cities and towns, then this could be the career for you! As a Transportation Planner, you'll be responsible for developing and implementing transportation plans that meet the needs of communities and individuals. This could involve everything from designing bike lanes and pedestrian walkways to planning public transit systems and managing traffic flow. One of the most appealing aspects of this role is the opportunity to make a real difference in people's lives. For example, you might design a new bike lane that makes it safer and easier for people to cycle to work, or you might develop a new public transit system that reduces congestion and improves air quality in your city. Typical duties in this field include conducting research and analysis, developing transportation plans and policies, collaborating with other professionals such as engineers and architects, and engaging with stakeholders and the public to gather feedback and support. There are also many potential areas of specialisation within Transportation Planning, including urban planning, environmental planning, and transportation engineering. Other related fields include civil engineering, geography, and public policy. To pursue a career in Transportation Planning, you'll typically need a bachelor's degree in a relevant field such as urban planning, geography, or civil engineering. Some popular and relevant undergraduate programs and majors include the Bachelor of Science in Transportation Planning and Management, the Bachelor of Science in Urban Studies and Planning, and the Bachelor of Science in Civil Engineering. Helpful personal attributes for this career include strong analytical and problem-solving skills, good communication and collaboration skills, and a passion for sustainability and social justice. In terms of job prospects and longer-term outlook, the demand for Transportation Planners is expected to grow in the coming years as cities and towns around the world continue to invest in sustainable and efficient transportation systems. There are many potential employers in both the public and private sectors, including government agencies, consulting firms, and transportation companies. Notable examples include the U.S. Department of Transportation, the World Bank, and the consulting firm Arup.
Do you have a passion for the environment? Are you interested in protecting our natural resources while also working in a dynamic and constantly evolving industry? If so, a career in environmental consulting may be the perfect fit for you! Environmental consulting is a field that involves advising companies, governments, and individuals on the environmental impact of their actions and how to minimize that impact. As an environmental consultant, you would work to ensure that new developments, construction projects, and other activities are conducted in a sustainable and responsible manner. You may also work to identify and mitigate existing environmental hazards, such as air or water pollution. One of the most appealing aspects of this career is the opportunity to make a positive impact on the world around us. For example, you might help a company design a building that generates its own energy, or work with a community to clean up a contaminated site and make it safe for use again. In addition to being meaningful, this field is also incredibly diverse. There are many different areas of specialization within environmental consulting, such as water quality, air quality, waste management, and sustainability. This means you can focus your career on a particular area that interests you the most. To become an environmental consultant, you typically need at least a bachelor's degree in a relevant field such as environmental science, engineering, or geology. Popular undergraduate programs and majors for environmental consulting include environmental studies, environmental engineering, and geography. In addition to a strong educational background, there are several personal attributes that can be helpful in this field. These include strong analytical skills, the ability to communicate effectively, and a passion for problem-solving. Job prospects in environmental consulting are strong, with increasing demand for professionals who can help companies and governments address environmental concerns. Some of the top employers in this field include large environmental consulting firms such as AECOM and Jacobs, as well as government agencies like the Environmental Protection Agency (EPA) in the United States and the Environment Agency in the United Kingdom.
Do you want to make a difference in the world and help protect our planet? Are you interested in finding solutions to environmental problems? Then studying Environmental Engineering might be the perfect fit for you! Environmental Engineering is a fascinating field of study that combines principles of engineering, environmental science, and sustainability. It involves designing and implementing solutions to environmental problems, such as air and water pollution, waste management, and climate change. One of the most appealing aspects of Environmental Engineering is the potential for real-life impact. For example, Environmental Engineers have played a crucial role in developing renewable energy sources, such as wind and solar power, to reduce our reliance on fossil fuels. They have also designed innovative solutions to clean up contaminated land and water, such as the restoration of the Hudson River in New York City. There are many inspiring academic figures in Environmental Engineering, such as Dr. Vandana Shiva, an Indian scholar and environmental activist who has written extensively on sustainable agriculture and biodiversity. Another notable figure is Dr. John Todd, an American biologist and ecological designer who has developed innovative wastewater treatment systems that mimic natural ecosystems. At the undergraduate level, typical majors and modules in Environmental Engineering include environmental chemistry, air and water pollution control, and sustainable design. There are also opportunities for further specialisation in areas such as renewable energy, green infrastructure, and environmental policy. With a degree in Environmental Engineering, there are many potential career paths to explore. You could work for a government agency, such as the Environmental Protection Agency, or for a private company that specialises in environmental consulting or sustainable design. Notable employers in this field include Tesla, Google, and the World Wildlife Fund. To succeed in Environmental Engineering, it is helpful to have a strong background in math and science, as well as an interest in sustainability and environmental issues. Strong problem-solving skills and attention to detail are also important, as you will be designing and implementing complex solutions to environmental problems. If you are passionate about protecting our planet and want to make a real difference in the world, studying Environmental Engineering could be the perfect path for you.
Scientists have developed a simple and low-cost method to break down almost a dozen types of "forever chemicals" known as PFAS, which have contaminated virtually every drop of water on the planet and are associated with certain cancers and thyroid diseases. By using a chemical guillotine and common solvents and reagents, they severed the molecular bonds in PFAS, gradually nibbling away at the molecule until it was gone, leaving behind only safe byproducts. This breakthrough could eventually make it easier for water treatment plants to remove PFAS from drinking water.
Are you concerned about plastic pollution? Five major companies, including Colgate-Palmolive, L'Oreal, and Procter & Gamble, are collaborating with MIT researchers to develop a sorting process that can keep their smallest plastic products inside the recycling chain. Alexis Hocken, a second-year PhD student in the MIT Department of Chemical Engineering, is working on this project, which aims to find a prototype sorting technology for large-scale testing and commercial development. This is an exciting opportunity to contribute to the urgent problem of plastic waste and explore the possibilities of recycling innovation.
Batteries are a crucial part of our modern lives, powering everything from our smartphones to our cars. But the production and disposal of batteries have significant environmental impacts, from toxic chemicals and heavy metals to greenhouse gas emissions. Fortunately, there are sustainable options and alternatives to batteries that can help mitigate these negative effects. One such option is kinetic energy, which converts motion into electricity. For example, the piezoelectric effect harnesses energy from pressure, while the triboelectric effect converts friction into electricity. Another alternative to batteries is supercapacitors, which store energy in an electric field rather than a chemical reaction. They charge and discharge quickly and have a longer lifespan than traditional batteries. These sustainable options and alternatives to batteries are being researched and developed by leading academics in the field of materials science and engineering. Dr. Jennifer Lewis, a professor of biologically inspired engineering at Harvard University, is leading a team that is working on creating 3D-printed energy storage devices using a hydrogel-based ink. Meanwhile, Dr. Yi Cui at Stanford University is researching how to improve the energy density and safety of solid-state batteries. By exploring academic topics like materials science and engineering, students can learn about the properties of different materials and how they can be manipulated to create sustainable technologies. You can also learn about the environmental impact of technology and how sustainable alternatives can mitigate these effects. In conclusion, sustainable alternatives to batteries offer exciting opportunities for innovation and environmental sustainability. By exploring academic topics related to these technologies, high school students can gain a deeper understanding of the scientific principles behind sustainable energy and contribute to a more sustainable future.
Are you fascinated by the chemical reactions that take place all around us? Do you want to contribute to innovations that will shape the future? Look no further than the field of Chemical Engineering! Chemical Engineering is a diverse and exciting field that combines chemistry, physics, and mathematics to create new materials, processes, and products. From designing new medicines to developing sustainable energy solutions, chemical engineers are at the forefront of innovation. One of the most exciting aspects of Chemical Engineering is the potential for groundbreaking research. Chemical engineers have played a key role in the development of new materials like graphene and carbon nanotubes, as well as the creation of new energy sources like biofuels and hydrogen fuel cells. Some of the most well-known academic figures in Chemical Engineering include George E. Davis, who pioneered the use of chemical engineering principles in the oil and gas industry, and Robert Langer, who has made significant contributions to the field of drug delivery. At the undergraduate level, students will typically take courses in subjects like thermodynamics, transport phenomena, and chemical reaction engineering. They may also have the opportunity to specialize in areas like materials science, biotechnology, or environmental engineering. Graduates of Chemical Engineering programs are in high demand across a range of industries, including pharmaceuticals, energy, and consumer goods. Some notable employers include Procter & Gamble, ExxonMobil, and Pfizer. To succeed in Chemical Engineering, students should have a strong foundation in math and science, as well as an interest in problem-solving and innovation. If you're ready to take on the challenge of creating new materials, processes, and products that will change the world, Chemical Engineering might just be the perfect field for you!
As demand for materials like copper and lithium skyrockets with the push for clean energy, companies are eyeing the ocean floor for a new source. But what are the potential consequences for marine life and ecosystems? Learn about the growing controversy and the UN's efforts to regulate deep-sea mining in this thought-provoking article.
Electric vehicles have come a long way since their inception in the late 19th century. While they were once the preferred mode of transportation due to their efficiency and reliability, the high cost of batteries and the discovery of oil reserves led to a decline in their popularity. However, with the growing concern over climate change, electric vehicles are making a comeback. They are now more cost-effective, efficient, and widely available than ever before. Not only do they accelerate faster than gas-powered cars, but they also save drivers money in the long run. With governments around the world focusing on reducing carbon emissions, it's expected that electric vehicles will soon replace gas-powered ones entirely. As a high school student, learning about the history and advancements in electric vehicles can provide valuable insight into the intersection of technology and environmentalism, and inspire you to think about how you can contribute to a sustainable future.
The world is constantly changing, and as high school students, it is essential to be aware of the problems that need solutions. Vinisha Umashankar, a 14-year-old from India, noticed the pollution caused by charcoal usage in the metal irons of street vendors and decided to take action. She designed an ironing cart powered by solar energy, eliminating the use of charcoal, deforestation, air pollution, and respiratory diseases caused by the traditional method. Learning about solar energy and sustainable solutions like Vinisha's can benefit you not only intellectually but practically as well. By exploring these concepts further, you can contribute to creating a better world for yourself and the generations to come.
Do you have a passion for food and a curious mind? Do you enjoy conducting experiments and discovering new things? Then a career in Food Science might be the perfect fit for you! Food Science is the study of the physical, chemical, and biological properties of food, and how they affect its quality, safety, and nutritional value. It's a fascinating field that combines elements of biology, chemistry, and engineering to create new and innovative food products that are both delicious and healthy. As a Food Scientist, you could be involved in a variety of exciting projects. For example, you might work on developing new food products that are low in fat, sugar, or salt, or that contain more fiber or protein. Or you might be responsible for ensuring the safety of food products by testing them for harmful bacteria or other contaminants. You could also work in the field of sensory science, where you would use your knowledge of taste, smell, and texture to help create foods that are more enjoyable to eat. The duties of a Food Scientist can vary depending on their area of specialization. Some Food Scientists work in research and development, where they design and test new food products. Others work in quality control, where they ensure that food products meet certain standards of safety and quality. Still others work in regulatory affairs, where they ensure that food products meet government regulations and guidelines. To become a Food Scientist, you'll typically need a Bachelor's degree in Food Science, Nutrition, or a related field. There are many excellent undergraduate programs available, such as the Food Science program at Cornell University or the Nutrition and Food Science program at the University of Alberta. In addition to a strong academic background, there are several personal attributes that can be helpful for a career in Food Science. These include a keen attention to detail, excellent problem-solving skills, and a creative and curious mind. The job prospects for Food Scientists are excellent, with many opportunities available in both the public and private sectors. Some notable employers include the United States Department of Agriculture, Nestle, and PepsiCo. In addition, there is a growing demand for Food Scientists in developing countries, where there is a need for new and innovative food products that can help address issues such as malnutrition and food insecurity. So if you're looking for a career that combines your love of food with your passion for science, consider exploring the exciting field of Food Science!
The story of Rudolf Diesel, the man behind the diesel engine, is a fascinating tale of innovation and environmentalism. Diesel's revolutionary compression ignition engine was more eco-friendly and power efficient than alternatives at the time, and it could run on a variety of fuels including coal dust and vegetable oils. Diesel became an evangelist for the use of vegetable oils as fuel, and his invention made him a millionaire by the time he reached his 40s. The benefits of exploring this academic concept are clear: understanding the history of innovation and environmentalism can inspire us to think creatively about how we can make our world a better place. Additionally, learning about the diesel engine can help us think critically about current debates around diesel fuel and its environmental impact. By exploring this academic concept, we can become more informed citizens and better equipped to make decisions that positively impact our world.
Plastics are everywhere, and most of them never biologically degrade. This is a major problem for our environment, as plastic waste pollutes natural ecosystems for centuries. Fortunately, there are microbes that may be able to help us solve this growing problem. Scientists have discovered bacteria, also known as plastivores, that contain enzymes capable of breaking down PET polymers, a common type of plastic. However, we still need ways to biologically degrade all the other types of plastic, including abundant PEs and PPs. Researchers are looking for more heat-tolerant plastivores in the planet's most hostile environments and engineering better plastivorous enzymes in the lab. As students, you have the opportunity to learn about this important issue and contribute to finding solutions. By exploring the science behind plastic degradation, you can gain a deeper understanding of how to protect our environment and create a more sustainable future.
As a society, we rely heavily on oil, but this addiction has led to environmental disasters like oil spills. However, nature has a way of cleaning up after us. Microbes, tiny bacteria that evolved to take advantage of oil and gas seeping from the sea floor, have been eating up oil spills for eons. In fact, a big bloom of microbes ate most of the 4.1 million barrels of oil spilt by BP's Macondo well in the Gulf of Mexico. These microbes are not only oil-eaters, but they also eat plastics, making them a potential solution to the Great Pacific Garbage Patch. Scientists are working on enhancing microbes' ability to eat oil and plastic, which could help us clean up our messes faster. Learning about these microbes and how they can benefit us is not only intellectually stimulating, but it also has practical implications for our planet's health.
Activities