Article
More like this
In the 1940s, women were joining the workforce in droves, but society still expected them to look well-groomed, even if it meant taking time away from their work. Hazel Bishop, an organic chemist, was sick of having to reapply her lipstick constantly and wanted to create a solution that was not only long-lasting but also healthy for the lips. After years of hard work, she introduced one of the first smudge-proof, long-lasting, and moisturizing lipsticks marketed as the only kissable lipstick. Bishop's product took off, and soon, other companies were replicating and creating other practical cosmetics. This story highlights the importance of innovation and creativity in solving everyday problems. It also shows how science and technology can be used to create products that benefit people's lives, and how women have made significant contributions to the workforce and the cosmetics industry. As students, exploring these academic concepts can not only expand their knowledge but also inspire them to develop their own innovative solutions to everyday problems.
Concrete is the most widely used construction material in the world, but it has a weakness: it's prone to catastrophic cracking that costs billions of dollars to repair each year. However, scientists have discovered ways to create concrete that can heal itself. By adding hidden glue or bacteria and fungi spores to the concrete mix, cracks can be repaired up to almost 1mm wide. This technique has the potential to make concrete more resilient and long-lasting, which could drastically reduce the financial and environmental cost of concrete production. Learning about the science behind concrete and its potential for self-healing can not only be intellectually stimulating but also practically beneficial for the future of construction. Imagine being part of the solution to creating more sustainable and durable infrastructure for our cities.
Are you passionate about the environment and sustainability? Do you want to make a difference in the world and help protect our planet for future generations? Then a career in Environmental Science might be the perfect fit for you! Environmental Science is a field that involves studying the natural world and the impact that humans have on it. This can involve everything from studying the effects of pollution on ecosystems, to developing new technologies that help us reduce our carbon footprint. One of the most exciting aspects of a career in Environmental Science is the opportunity to work on real-world problems that affect people and the planet. For example, you could work on developing new ways to produce clean energy, or help design policies that protect endangered species. As an Environmental Scientist, your duties might include collecting and analyzing data, conducting fieldwork, and communicating your findings to others. You might specialize in areas such as climate change, water quality, or sustainable agriculture. Other related fields include Environmental Engineering, Conservation Biology, and Environmental Policy. To become an Environmental Scientist, you will typically need to have at least a Bachelor's degree in a relevant field such as Environmental Science, Biology, or Chemistry. Some popular undergraduate programs and majors include Environmental Studies, Sustainability, and Natural Resource Management. Helpful personal attributes for a career in Environmental Science include a strong interest in science and the environment, excellent communication skills, and a passion for problem-solving. You should also be comfortable working both independently and as part of a team. Job prospects for Environmental Scientists are strong, with a projected growth rate of 8% over the next decade. There are many potential employers in both the public and private sectors, including government agencies, non-profits, and consulting firms. Some notable examples include the Environmental Protection Agency, The Nature Conservancy, and the World Wildlife Fund. So if you're looking for a career that allows you to make a difference in the world and work on important environmental issues, consider a career in Environmental Science. With the right education and training, you can help shape a more sustainable future for all of us.
Do you have a passion for food and a curious mind? Do you enjoy conducting experiments and discovering new things? Then a career in Food Science might be the perfect fit for you! Food Science is the study of the physical, chemical, and biological properties of food, and how they affect its quality, safety, and nutritional value. It's a fascinating field that combines elements of biology, chemistry, and engineering to create new and innovative food products that are both delicious and healthy. As a Food Scientist, you could be involved in a variety of exciting projects. For example, you might work on developing new food products that are low in fat, sugar, or salt, or that contain more fiber or protein. Or you might be responsible for ensuring the safety of food products by testing them for harmful bacteria or other contaminants. You could also work in the field of sensory science, where you would use your knowledge of taste, smell, and texture to help create foods that are more enjoyable to eat. The duties of a Food Scientist can vary depending on their area of specialization. Some Food Scientists work in research and development, where they design and test new food products. Others work in quality control, where they ensure that food products meet certain standards of safety and quality. Still others work in regulatory affairs, where they ensure that food products meet government regulations and guidelines. To become a Food Scientist, you'll typically need a Bachelor's degree in Food Science, Nutrition, or a related field. There are many excellent undergraduate programs available, such as the Food Science program at Cornell University or the Nutrition and Food Science program at the University of Alberta. In addition to a strong academic background, there are several personal attributes that can be helpful for a career in Food Science. These include a keen attention to detail, excellent problem-solving skills, and a creative and curious mind. The job prospects for Food Scientists are excellent, with many opportunities available in both the public and private sectors. Some notable employers include the United States Department of Agriculture, Nestle, and PepsiCo. In addition, there is a growing demand for Food Scientists in developing countries, where there is a need for new and innovative food products that can help address issues such as malnutrition and food insecurity. So if you're looking for a career that combines your love of food with your passion for science, consider exploring the exciting field of Food Science!
Plastics have become ubiquitous in our daily lives, but few of us know the history behind this versatile material. The first plastic was created in 1863 by an American named John Wesley Hyatt, who invented celluloid, made from cellulose found in wood and straw. This discovery led to a cascade of new plastics, including bakelite, polystyrene, polyvinyl chloride, acrylics, and nylon. Plastics have replaced other materials like wood, glass, and fabric in furniture, clothing, and packaging. While plastics have brought convenience and cost-effectiveness, they have also created staggering environmental problems. Many plastics are made of nonrenewable resources, and plastic packaging was designed to be single-use, but some plastics take centuries to decompose, creating a huge buildup of waste. By learning about plastics, students can understand how science and innovation have shaped our world, and they can explore ways to address the environmental problems associated with plastic use.
Unlock the secrets of microscopic processes with microrobots! Researchers at the University of Pennsylvania and University of Ljubljana are using physical intelligence to manipulate colloidal fluids of nematic liquid crystals with magnetically controlled microrobots. This groundbreaking work, published in Advanced Functional Materials, lays the foundation for understanding small-scale interactions and has exciting potential applications in the optical device industry and beyond.
The story of Joseph B. Friedman and his invention of the bendy straw is a testament to the power of creativity and problem-solving. By modifying a simple straw, he revolutionized the way we drink and brought joy to countless children. As high school students, you too can tap into your creativity and use it to explore academic topics in new and exciting ways. By reading, reflecting, and writing about the ideas that interest you, you can develop the critical thinking and communication skills that are essential for success in college and beyond. So don't be afraid to take risks and try new things - who knows, you might just come up with the next great invention!
Scientists have developed a simple and low-cost method to break down almost a dozen types of "forever chemicals" known as PFAS, which have contaminated virtually every drop of water on the planet and are associated with certain cancers and thyroid diseases. By using a chemical guillotine and common solvents and reagents, they severed the molecular bonds in PFAS, gradually nibbling away at the molecule until it was gone, leaving behind only safe byproducts. This breakthrough could eventually make it easier for water treatment plants to remove PFAS from drinking water.
Do you ever wonder what goes into creating your favorite snacks or how your favorite restaurant creates their signature dishes? If you're passionate about food and curious about the science behind it, then studying Food Science at university could be the perfect fit for you! Food Science is a multidisciplinary field that combines chemistry, biology, nutrition, and engineering to study the physical, chemical, and biological properties of food. This field of study is all about understanding how food is processed, preserved, and packaged, as well as how it affects the human body. One of the most exciting aspects of Food Science is the potential for innovation and discovery. Researchers in this field are constantly working on new ways to improve the taste, texture, and nutritional value of food. For example, did you know that Food Scientists have developed plant-based meat alternatives that look, taste, and even "bleed" like real meat? Or that they've created edible packaging made from seaweed that could revolutionize the way we package and transport food? Some of the most influential figures in Food Science include Harold McGee, who wrote the seminal book "On Food and Cooking: The Science and Lore of the Kitchen," and Hervé This, who is credited with being one of the pioneers of Molecular Gastronomy. At the undergraduate level, typical majors and modules in Food Science include food chemistry, food microbiology, food engineering, and food safety. Students can also specialize in areas such as product development, sensory analysis, and food packaging. But what can you do with a degree in Food Science? The possibilities are endless! Graduates can go on to work in a variety of industries, including food and beverage manufacturing, food safety and regulation, and product development. Some notable employers in this field include Nestle, Kraft Heinz, and PepsiCo. If you're considering studying Food Science, it's important to have a strong foundation in science and math. Additionally, having a passion for food and an interest in sustainability and health can be helpful attributes to succeed in this field. So if you're ready to combine your love of food with your passion for science, then studying Food Science could be the perfect path for you!
Discover the fascinating story of how a broken soda fountain led to the creation of ICEE, the science behind its slushy texture, and the complex chemistry of its flavor syrup. Explore the avalanche-like physics of how ICEE solidifies and the Joules-Thomson effect that makes it puff up. Learn about the inventor, Omar Knedlik, and how his entrepreneurial spirit led to the mass production of his invention, eventually renamed Slurpee by 7-Eleven.
The history of gunpowder is not just about explosions and destruction, but also about invention and innovation. The ancient Chinese alchemists who created the flammable powder that would later become gunpowder were actually trying to create a potion for immortality. While they never found the secret to eternal life, they did discover something that would shape all of civilization. Gunpowder has been used for both good and bad, from creating fireworks to defend against invaders. Learning about the history of gunpowder can inspire us to explore the science behind it and the ways it has impacted our world. By understanding the properties of gunpowder, we can appreciate the beauty of fireworks and the power of scientific discovery.
Clean water is an essential resource for all life on Earth, and the pursuit of ensuring access to clean water has been a focus of research, policy, and advocacy for decades. In this write-up, we'll explore the history of clean water, the challenges we face, and the progress we've made over time. One of the earliest recorded efforts to ensure clean water was by the ancient Greeks, who built the first aqueducts to transport water to their cities. Fast forward to the present day, and the challenge of ensuring access to clean water remains a pressing issue, with over two billion people lacking access to safe drinking water worldwide. The field of water resources engineering has emerged to address this challenge, with experts working on solutions such as desalination, water treatment, and conservation. One leading academic in this field is Dr. Rita Colwell, who has dedicated her career to researching and preventing waterborne diseases, including cholera. Another key concept in the pursuit of clean water is sustainability, which refers to using resources in a way that meets the needs of the present without compromising the ability of future generations to meet their own needs. This requires balancing economic, environmental, and social factors to ensure that our water resources are managed in a way that is equitable and efficient. One leading scholar in this area is Dr. Peter Gleick, who founded the Pacific Institute, a research organization that focuses on water issues. Despite the ongoing challenges, progress has been made in the field of clean water. For example, the percentage of the global population with access to clean drinking water has increased from 76% in 1990 to 91% in 2015. Additionally, advances in technology and infrastructure have allowed for improved water treatment and distribution, as well as the development of new methods of water conservation. Remember, the pursuit of knowledge is a lifelong journey, and there's always more to discover and learn. By exploring academic topics like clean water, you can broaden your understanding of the world, develop critical thinking skills, and make a positive impact on the world around you.
From lozenge machines to 3D printing, discover the sweetest innovations in candy-making. Learn about solid popping candy and heat-resistant chocolate, and explore how Disney projected video onto cakes. Explore the history of Valentine's Day candy and the most interesting candy-related patents from the United States Patent and Trademark Office.
MIT researchers have developed a 3D-printed miniature vacuum pump that could revolutionize the use of portable mass spectrometers. The pump is inexpensive, lightweight, and can operate at a low cost, making it ideal for use in remote locations or even in space. The unique design prevents fluid or gas from leaking while minimizing heat from friction during the pumping process, increasing the lifetime of the device. This breakthrough could lead to the monitoring of soil contamination in isolated parts of the world or geological survey equipment bound for Mars.
Are you fascinated by the world of science and engineering? Do you enjoy exploring the properties of different materials and their potential applications? If so, then studying Materials Science at university undergraduate level might just be the perfect fit for you! Materials Science is an interdisciplinary field that combines the principles of physics, chemistry, and engineering to investigate the properties of different materials and develop new materials with specific properties. This field of study is essential in the development of new technologies, from the creation of lighter and stronger materials for aerospace applications to the development of new medical implants that can better integrate with the human body. One of the most exciting aspects of Materials Science is the wide range of research and innovation that is taking place in this field. From the development of new materials for energy storage and conversion to the creation of biomaterials for use in tissue engineering, there is no shortage of fascinating research topics to explore. At the undergraduate level, Materials Science majors can expect to take a variety of modules that cover topics such as materials characterization, materials processing, and materials design. Students will also have the opportunity to specialize in areas such as nanomaterials, biomaterials, and electronic materials, among others. With a degree in Materials Science, graduates can look forward to a range of exciting career opportunities. Some of the key industries for prospective future employment include aerospace, automotive, electronics, and healthcare. Notable employers in these industries include companies such as Boeing, Tesla, Intel, and Johnson & Johnson, among many others. To succeed in this field of study, students should possess a strong foundation in mathematics and physics, as well as a keen interest in materials science and engineering. Additionally, strong problem-solving skills, attention to detail, and a passion for innovation are all essential attributes for success in this field. So, if you're looking for a challenging and rewarding field of study that combines the principles of science and engineering with real-world applications, then look no further than Materials Science!
The development and spread of railroads across the United States brought about many changes to American life, including the establishment of standard time. Before the railroads, each town kept its own local time, which made it difficult to keep a train schedule and prevent accidents. To eliminate confusion, the railroads of the United States and Canada instituted standard time zones on November 18, 1883, allowing the railroad companies to operate more effectively and reduce deadly accidents. The concept of standard time has remained since then, and it has become a matter of law with the Standard Time Act of March 19, 1918. Learning about the history of standard time is intellectually stimulating and can help students understand how transportation and communication have evolved over time. Additionally, understanding the importance of standard time is practically beneficial as it is still used today in many aspects of our lives.
This story of Harry Coover, a chemist during World War II, highlights the importance of persistence and creative thinking in academic pursuits. Coover and his team encountered challenges in their research, but instead of giving up, they looked for alternative uses for the materials they were working with. This led to the creation of super glue, which has saved countless lives in medical settings. This story shows that academic curiosity and perseverance can lead to unexpected discoveries with practical applications. By exploring academic topics through reading, reflection, and self-directed projects, students can develop the skills needed to tackle complex problems and make meaningful contributions to society.
Self-heating convenience food has been around for decades, but have you ever wondered how it works? This exciting field of food science combines chemistry, physics, and engineering to create meals that heat themselves. Let's take a closer look at the science behind these on-the-go meals. First, let's explore the technology behind self-heating food. The packaging for self-heating meals is made up of several layers, including a water pouch, a heating element, and an insulating layer. When the pouch is squeezed, it releases water, which then comes into contact with the heating element, creating a chemical reaction that generates heat. This chemical reaction is based on the principle of exothermic reactions, which release energy in the form of heat. The heating element in self-heating food typically contains a mixture of calcium oxide and water, which react to create calcium hydroxide and heat. This reaction is often catalyzed by a small amount of sodium chloride. But how does this chemical reaction actually heat up the food? The heat generated by the reaction is transferred to the surrounding water, which then heats up the food in the container. The insulating layer of the packaging helps to keep the heat trapped inside the container, ensuring that the food stays hot for several minutes. Innovation in self-heating food technology has come a long way since the first self-heating meals were introduced in the 1960s. Today, companies like Hot-Can and OMEALS have developed sophisticated self-heating meal kits that include a variety of menu options, from pasta dishes to breakfast sandwiches. Leading academics in the field of self-heating food technology include Dr. Gregory Ziegler, a professor of food science at Penn State University, who has studied the properties of different materials used in self-heating packaging. With so many fascinating aspects to explore, the science of self-heating convenience food is an excellent topic for students looking to independently explore academic topics through reading, reflection, writing, and self-directed projects.
Batteries are a crucial part of our modern lives, powering everything from our smartphones to our cars. But the production and disposal of batteries have significant environmental impacts, from toxic chemicals and heavy metals to greenhouse gas emissions. Fortunately, there are sustainable options and alternatives to batteries that can help mitigate these negative effects. One such option is kinetic energy, which converts motion into electricity. For example, the piezoelectric effect harnesses energy from pressure, while the triboelectric effect converts friction into electricity. Another alternative to batteries is supercapacitors, which store energy in an electric field rather than a chemical reaction. They charge and discharge quickly and have a longer lifespan than traditional batteries. These sustainable options and alternatives to batteries are being researched and developed by leading academics in the field of materials science and engineering. Dr. Jennifer Lewis, a professor of biologically inspired engineering at Harvard University, is leading a team that is working on creating 3D-printed energy storage devices using a hydrogel-based ink. Meanwhile, Dr. Yi Cui at Stanford University is researching how to improve the energy density and safety of solid-state batteries. By exploring academic topics like materials science and engineering, students can learn about the properties of different materials and how they can be manipulated to create sustainable technologies. You can also learn about the environmental impact of technology and how sustainable alternatives can mitigate these effects. In conclusion, sustainable alternatives to batteries offer exciting opportunities for innovation and environmental sustainability. By exploring academic topics related to these technologies, high school students can gain a deeper understanding of the scientific principles behind sustainable energy and contribute to a more sustainable future.
Nanotechnology is a fascinating field of study that explores the science of the very small. Imagine being able to manipulate and control matter at the atomic and molecular level! This is the world of nanotechnology. It is a highly interdisciplinary field that combines physics, chemistry, biology, and engineering to create new materials, devices, and systems that have the potential to revolutionize our world. One of the most exciting aspects of nanotechnology is the potential for new and innovative products that can improve our lives in countless ways. For example, scientists are currently researching how to use nanotechnology to develop new drug delivery systems, create more efficient solar panels, and even build tiny robots that can be used for medical purposes. Some of the most inspiring academic discourse in nanotechnology has come from researchers like Richard Smalley, who won the Nobel Prize in Chemistry for his work on carbon nanotubes, and Sumio Iijima, who discovered the first carbon nanotubes. Their groundbreaking research has paved the way for countless other scientists to explore the possibilities of nanotechnology. If you're interested in studying nanotechnology at the undergraduate level, you can expect to take courses in subjects like nanomaterials, nanoelectronics, and nanobiotechnology. You'll also have the opportunity to specialize in areas like nanomedicine or nanophotonics, depending on your interests. The potential career paths for someone with a degree in nanotechnology are vast and varied. You could work in industries like electronics, energy, or healthcare, developing new products and technologies that could change the world. Some specific examples of potential employers include Intel, IBM, and General Electric. To succeed in the field of nanotechnology, you'll need a strong background in science and math, as well as excellent critical thinking and problem-solving skills. You'll also need to be creative and innovative, as the field is constantly evolving and new discoveries are being made all the time. If you're interested in exploring the world of nanotechnology further, there's no better time to start than now. With so much potential for innovation and discovery, it's an exciting field that is sure to inspire and challenge you for years to come.
Activities
Academic Extensions
Thought Experiments