Article
More like this
The invasion of purple sea urchins has devastated kelp forests along the coasts of California, Japan, Norway, Canada, and Tasmania, leaving behind barren underwater landscapes that can last for decades. However, a Norwegian company called Urchinomics has a plan to restore kelp forests and create a new fishery for overpopulated urchins through "urchin ranching." Urchin ranching could potentially create a local speciality dining market for purple urchin uni, but it will take an aggressive and thorough approach to remove enough urchins to restore kelp forests.
In "The Soil Will Save Us," Kristin Ohlson argues that the solution to climate change may lie beneath our feet. Thousands of years of poor farming practices and modern agriculture have stripped the world's soils of up to 80% of their carbon, contributing to atmospheric warming. But by adopting ecological approaches that prioritize the health of soil and its microorganisms, we can turn atmospheric carbon into beneficial soil carbon and potentially reverse global warming. Ohlson introduces readers to the visionaries who are figuring out how to build healthy soil and solve problems like drought, erosion, pollution, and food quality. Recommended for environmentalists, farmers, scientists, and anyone interested in sustainable agriculture and combating climate change. Kristin Ohlson's "The Soil Will Save Us" challenges conventional thinking about farming practices and offers a hopeful solution to the climate crisis. The book has particular relevance to those studying ecology, environmental science, and agriculture, as well as those working in fields related to food and sustainability. It highlights the importance of healthy soil and its role in mitigating the effects of climate change, making it a must-read for anyone interested in creating a more sustainable future.
Transform farmland into thriving habitats for nature while hitting UK's climate and biodiversity targets at half the cost? Yes, it's possible! A new study by leading universities shows incentivizing farmers to spare land for habitats is a cost-effective solution.
Chemical fertilizers are widely used in modern agriculture to boost crop yields. However, these fertilizers are not without risk. In this write-up, we will explore the dangers of chemical fertilizers, including their impact on the environment and human health. We will also examine the alternatives to chemical fertilizers and the role of specific academics in this field. Chemical fertilizers can have a negative impact on the environment, particularly when they are not used in moderation. Excessive use of nitrogen fertilizers can lead to nitrate pollution in waterways, harming aquatic life and posing risks to human health. This pollution can also contribute to algal blooms, which can lead to the formation of dead zones in water bodies. In addition, the production and use of chemical fertilizers can contribute to greenhouse gas emissions, exacerbating climate change. The negative impacts of chemical fertilizers are also beyond human health. Exposure to high levels of fertilizer dust can cause respiratory problems, while exposure to nitrates in drinking water has been linked to an increased risk of certain types of cancer. Pesticides that are often used in conjunction with chemical fertilizers can also pose risks to human health. There are a number of alternatives to chemical fertilizers that can reduce their negative impact. These include organic and natural fertilizers, such as compost and manure, as well as crop rotation and cover crops. In addition, precision agriculture techniques can help farmers apply fertilizers more efficiently and effectively, reducing the risk of pollution. Leading academics in the field of sustainable agriculture have made significant contributions to our understanding of the dangers of chemical fertilizers and the alternatives that exist. For example, Dr. David Montgomery, a geologist at the University of Washington, has written extensively on the impact of industrial agriculture on soil health, and the benefits of regenerative agriculture practices. Similarly, Dr. Rattan Lal, a soil scientist at Ohio State University, has focused on the use of carbon sequestration techniques in agriculture to reduce greenhouse gas emissions. Chemical fertilizers pose a significant risk to the environment and human health, but there are alternatives that can be used to reduce these risks. By exploring the work of leading academics in the field, we can gain a deeper understanding of these issues and work to promote sustainable agriculture practices.
Did you know that approximately 40% of the global fish catch is discarded as bycatch, unintentionally caught fish that are not the target of the fishing operation? This means that a significant amount of fish, which could be used for food and other purposes, is being wasted. Fortunately, researchers and industry leaders are coming up with innovative solutions to turn bycatch into valuable resources. Bycatch can be transformed into fish meal, used as fertilizer, or even turned into high-end seafood products. One of the leading experts in this field is Dr. Daniel Pauly, a fisheries scientist and professor at the University of British Columbia. Dr. Pauly is known for his work on developing methods to estimate global fish catches, and he has also been a vocal advocate for reducing bycatch and promoting sustainable fishing practices. Another academic making significant contributions in this area is Dr. Karin Limburg, a fisheries biologist and professor at the SUNY College of Environmental Science and Forestry. Dr. Limburg has researched the use of bycatch for fertilizer and has found that it can be a valuable source of nutrients for crops. In addition to these experts, industry leaders such as FishWise, a nonprofit seafood sustainability consultancy, are also working to reduce bycatch and promote sustainable fishing practices. They work with major seafood retailers and distributors to improve the sustainability of the seafood supply chain. By exploring this topic further, you can develop a deeper understanding of the complex issues facing our oceans and contribute to finding innovative solutions for a more sustainable future.
In "Animal, Vegetable, Miracle," Barbara Kingsolver and her family embark on a year-long journey to live off food from their own neighborhood, shunning the industrial-food pipeline. This memoir-journalistic investigation hybrid will take you on a thought-provoking adventure, revealing the true meaning of "you are what you eat." Kingsolver's enthralling narrative will open your eyes to the importance of locally sourced food, sustainability, and self-sufficiency. Recommended for environmentalists, foodies, sustainability advocates, and anyone interested in the impact of food on our health and the planet. This book will also appeal to those studying agriculture, ecology, and environmental science. Kingsolver's memoir will inspire readers to rethink their food choices and consider the benefits of locally sourced produce. Additionally, this book will be relevant to those interested in self-sufficiency and homesteading.
Soil is one of the most underrated and little-understood wonders of our planet, yet it is crucial to our survival. In just one teaspoon of soil, there are more microorganisms than there are people on Earth. These microorganisms produce antibiotic compounds that form the basis of many of the antibiotics used by humans. Soil is also home to earthworms and intricate webs of fungal threads that create space for plant roots to grow and keep soil alive. Soil provides us with almost everything we eat, and it is a valuable carbon store, capturing and locking away carbon deep underground. However, soil is under threat from intensive farming and other human activities. It takes more than 100 years to build just 5 millimetres of soil, but just moments to destroy it. It's important to value, appreciate, and protect soil for many reasons, including regulating our atmosphere, reducing flooding, and providing a biodiverse habitat. Learning more about soil can help us understand the interconnected ecosystem we're all part of and inspire us to protect this vital resource for future generations.
Do you know where your food comes from? In 'The Omnivore's Dilemma: A Natural History of Four Meals', Michael Pollan takes you on a journey from the industrial food complex to foraging in the wild, revealing the hidden costs of our modern food systems. As you follow each food chain, you'll learn how our eating choices impact not only our own health but also the health of the environment. Pollan's insightful exploration of our relationship with food will make you question everything you thought you knew about what's on your plate. Recommended for anyone interested in food systems, environmental sustainability, health, and ethics. This book is relevant to students interested in fields such as agriculture, biology, nutrition, environmental studies, and ethics. It is also relevant to anyone who cares about the impact of their food choices on their health and the health of the planet. The book challenges readers to think critically about the industrial food complex and consider alternative ways of producing and consuming food that prioritize sustainability and ethical considerations.
Are you a fan of seafood, but concerned about sustainability? Mock meats have already made their way to the forefront of plant-based cuisine, and now faux seafood is taking center stage. From shrimp to tuna to even sushi, innovative companies are using seaweed, plant protein, and other natural flavors to recreate the taste and texture of seafood without harming the oceans. The Culinary Institute of America has even teamed up with a vegan shrimp startup, New Wave Foods, to perfect the flavor of their shellfish substitute. Whether you're a vegetarian or simply looking to reduce your carbon footprint, these plant-based seafood options are worth a taste test.
Pesticides are ubiquitous in modern agriculture, but their detrimental effects on human health and the environment are becoming increasingly evident. A new approach, called regenerative agriculture, is emerging as a sustainable and healthier alternative. Biological farming practices like those of Tim Parton, a UK farm manager, prioritise soil and environmental health by minimising synthetic inputs, and have led to increased biodiversity and crop yields without the need for harmful chemicals. However, while the environmental and health benefits of regenerative agriculture are clear, the transition away from pesticide-dependent farming remains a challenge for many.
Sea otters were once hunted to near extinction for their dense fur. But since their protection in the early 20th century, they have made a remarkable recovery, with reintroductions leading to a population boom. However, their return has enraged shellfish divers who see the marine mammal's legendary appetite as a threat to their livelihoods. Explore the controversy surrounding the sea otter's recovery and the challenges of coexisting with this charismatic creature.
Did you know that manure and synthetic fertilisers emit more carbon per year than global aviation and shipping combined? A recent study from the University of Cambridge quantified the impact of fertilisers on greenhouse gas emissions, revealing that two-thirds of emissions come from the use of fertilisers, not from production. While fertilisers are crucial for global food security, their carbon emissions urgently need to be reduced. The researchers identified a combination of scalable technological and policy solutions that could reduce fertiliser emissions by as much as 80% without compromising food production. However, the implementation of such methods require various stakeholders to give up certain profits, henceforth requiring a need for a balance to be struck between environmental efforts and economic incentives.
In just 70 years, the UK's landscape has undergone drastic changes, with non-native species thriving and native plants dwindling due to modern agriculture and climate change. The Plant Atlas 2020, produced by the Botanical Society of Britain and Ireland, reveals the catastrophic loss of grasslands, heathlands, and other habitats that would shock those brought up in the 1950s. The survey also highlights the impact of climate change on plant life and calls for stronger laws and sustainable land management to protect flora. Sir David Attenborough presents a new BBC documentary, Wild Isles, on the subject.
Did you know that seaweed could be the answer to global food insecurity and reducing greenhouse gas emissions? Seaweed is not only a dietary staple and carbon soaker, but also holds potential for replacing plastics, animal feed, and biofuels. Researchers from the University of Queensland have mapped out the potential of farming more commercially important seaweed species and estimated that expanding seaweed farming could reduce global agricultural greenhouse gas emissions by up to 2.6 billion tonnes of CO2-equivalent per year. However, careful management is needed to avoid potential ecological impacts.
Environmental sustainability and food security are critical issues that affect everyone on the planet. The way we produce, distribute and consume food has a significant impact on the environment and its resources. The good news is, by making simple changes in our daily lives, we can help protect our planet and secure a sustainable future. Leading figures in the field, such as Jonathan Foley and Greta Thunberg, have made it their mission to raise awareness about the importance of environmental sustainability and food security. Jonathan Foley, a renowned environmental scientist and director of the California Academy of Sciences, has dedicated his career to studying the impact of human activities on the environment and developing innovative solutions to address environmental challenges. Greta Thunberg, a young Swedish climate activist, has inspired millions of people around the world to take action on climate change and protect the planet for future generations. Did you know that according to the United Nations, food production is responsible for up to 30% of global greenhouse gas emissions? It's essential that we find ways to produce food in a more sustainable way. To achieve this, we need to reduce waste, promote more environmentally friendly farming practices and improve the efficiency of food distribution systems. Food security is also a major concern, as many people around the world still do not have access to enough nutritious food. This is often due to poverty, natural disasters, and war. By promoting sustainable agriculture and reducing food waste, we can help to ensure that everyone has access to healthy and nutritious food. So, what are you waiting for? Get out there and start exploring! Remember, every little bit helps, and together we can create a better future for our planet and future generations.
Alaskan fisherman Dune Lankard has witnessed the devastating impacts of natural and man-made disasters on his industry and homeland, from earthquakes to oil spills. Now, he's turning to regenerative ocean farming to mitigate the effects of climate change and create a new regenerative economy based on conservation, restoration, and mitigation. This burgeoning concept, developed by Canadian commercial fisherman turned ocean farmer Bren Smith, involves growing seaweed and shellfish in small underwater gardens, and is touted as the new farming model of the future. Explore the fascinating intersection of traditional fishing practices and sustainable ocean farming in this thought-provoking article.
Soybeans have been used for centuries in Asian cuisine, but American industrialist Henry Ford took soy to the next level in the 1930s. Soy's versatility and ability to grow easily and cheaply in variable conditions make it a staple in many foods, from mayonnaise to biodegradable plastic. Soy proteins and fats have been used to make spongy foods like tofu and to help make processed foods. Soybeans are also a great source of essential amino acids and "good" fats, which can decrease cholesterol and reduce the risk of heart disease. However, the widespread use of soy has led to deforestation and the displacement of farmers and indigenous communities. Learning about the benefits and challenges of soy can help students become more aware consumers and understand the importance of finding ways to use soy humanely and sustainably.
Discover the fascinating history behind the painstaking hand-pollination process of vanilla, the world's second most expensive spice. Learn how the enslaved boy Edmond Albius developed the method that is still in use today and the challenges faced by farmers in cultivating and processing this beloved flavor. Explore how vanilla has become one of the most lucrative spices in existence, with an insatiable demand from consumers worldwide.
In today's world, it's easy to take for granted the food we eat and where it comes from. However, understanding the complex supply chain behind the fruits and vegetables we purchase can have significant intellectual and practical benefits. In times of crisis, like during the COVID-19 pandemic, supply chains are stretched thin, and it becomes more important than ever to explore alternative ways of growing food. Enter high-tech urban agriculture, a revolutionary concept that could transform the way we produce and consume food. With vertical farms popping up in cities worldwide, growing crops closer to where they are eaten is becoming a reality. These systems provide numerous benefits, from being healthier and more sustainable to containing no pesticides. By exploring these cutting-edge concepts further, students can gain knowledge about sustainable practices, future technologies, and global supply chains.
Have you ever heard of growing plants without soil? It's possible with hydroponics and aquaponics! These innovative methods of agriculture have gained popularity in recent years for their ability to produce high yields of fresh produce while using less space, water, and pesticides than traditional farming. In this write-up, we'll explore the fascinating world of hydroponics and aquaponics, diving into the concepts, benefits, and contributions from leading academics in the field. Hydroponics is the practice of growing plants in nutrient-rich water instead of soil. This method can be done in a variety of ways, from a simple jar with water and plant roots to complex systems using pumps, pipes, and controlled environments. Aquaponics takes it a step further by combining hydroponics with fish farming. In this closed-loop system, fish waste provides nutrients for plants, while plants naturally filter and clean the water for the fish. Did you know that hydroponics and aquaponics can yield up to 10 times more produce than traditional farming methods? This is because the plants receive precisely the nutrients they need, and water is recycled efficiently. Additionally, these methods can be done year-round, in any climate, and with less land space. It's no wonder that hydroponics and aquaponics are gaining attention from both commercial farmers and hobbyists alike. One leading academic in this field is Dr. Dickson Despommier, a professor at Columbia University. He's written extensively on vertical farming, an innovative form of agriculture that takes hydroponics to new heights by stacking layers of plants vertically. Another notable academic is Dr. Rakocy from the University of the Virgin Islands, who pioneered the development of modern aquaponics in the 1980s. In conclusion, hydroponics and aquaponics offer an innovative and sustainable solution to traditional farming methods. With its ability to produce more fresh produce with less resources, it's no wonder why this field is gaining traction. By exploring this topic further, you can discover new and exciting ways to apply academic concepts to real-world problems.
Activities
Academic Extensions
Thought Experiments