Article
More like this
Did you know that seaweed could be the answer to global food insecurity and reducing greenhouse gas emissions? Seaweed is not only a dietary staple and carbon soaker, but also holds potential for replacing plastics, animal feed, and biofuels. Researchers from the University of Queensland have mapped out the potential of farming more commercially important seaweed species and estimated that expanding seaweed farming could reduce global agricultural greenhouse gas emissions by up to 2.6 billion tonnes of CO2-equivalent per year. However, careful management is needed to avoid potential ecological impacts.
Did you know that manure and synthetic fertilisers emit more carbon per year than global aviation and shipping combined? A recent study from the University of Cambridge quantified the impact of fertilisers on greenhouse gas emissions, revealing that two-thirds of emissions come from the use of fertilisers, not from production. While fertilisers are crucial for global food security, their carbon emissions urgently need to be reduced. The researchers identified a combination of scalable technological and policy solutions that could reduce fertiliser emissions by as much as 80% without compromising food production. However, the implementation of such methods require various stakeholders to give up certain profits, henceforth requiring a need for a balance to be struck between environmental efforts and economic incentives.
The invasion of purple sea urchins has devastated kelp forests along the coasts of California, Japan, Norway, Canada, and Tasmania, leaving behind barren underwater landscapes that can last for decades. However, a Norwegian company called Urchinomics has a plan to restore kelp forests and create a new fishery for overpopulated urchins through "urchin ranching." Urchin ranching could potentially create a local speciality dining market for purple urchin uni, but it will take an aggressive and thorough approach to remove enough urchins to restore kelp forests.
In "The Soil Will Save Us," Kristin Ohlson argues that the solution to climate change may lie beneath our feet. Thousands of years of poor farming practices and modern agriculture have stripped the world's soils of up to 80% of their carbon, contributing to atmospheric warming. But by adopting ecological approaches that prioritize the health of soil and its microorganisms, we can turn atmospheric carbon into beneficial soil carbon and potentially reverse global warming. Ohlson introduces readers to the visionaries who are figuring out how to build healthy soil and solve problems like drought, erosion, pollution, and food quality. Recommended for environmentalists, farmers, scientists, and anyone interested in sustainable agriculture and combating climate change. Kristin Ohlson's "The Soil Will Save Us" challenges conventional thinking about farming practices and offers a hopeful solution to the climate crisis. The book has particular relevance to those studying ecology, environmental science, and agriculture, as well as those working in fields related to food and sustainability. It highlights the importance of healthy soil and its role in mitigating the effects of climate change, making it a must-read for anyone interested in creating a more sustainable future.
In just 70 years, the UK's landscape has undergone drastic changes, with non-native species thriving and native plants dwindling due to modern agriculture and climate change. The Plant Atlas 2020, produced by the Botanical Society of Britain and Ireland, reveals the catastrophic loss of grasslands, heathlands, and other habitats that would shock those brought up in the 1950s. The survey also highlights the impact of climate change on plant life and calls for stronger laws and sustainable land management to protect flora. Sir David Attenborough presents a new BBC documentary, Wild Isles, on the subject.
Discover the fascinating history behind the painstaking hand-pollination process of vanilla, the world's second most expensive spice. Learn how the enslaved boy Edmond Albius developed the method that is still in use today and the challenges faced by farmers in cultivating and processing this beloved flavor. Explore how vanilla has become one of the most lucrative spices in existence, with an insatiable demand from consumers worldwide.
Your favorite chocolate, moisturizer, and tea may contain ingredients from threatened plants, leading to environmental damage and worker exploitation. A recent report highlights 12 such plants, including Brazil nuts and frankincense, and warns of overharvesting, child labor, and violations of worker's rights. As the demand for natural products grows, it's important to consider the sustainability of their ingredients. Learn more about the risks and challenges of sourcing plant derivatives in household products.
Sea otters were once hunted to near extinction for their dense fur. But since their protection in the early 20th century, they have made a remarkable recovery, with reintroductions leading to a population boom. However, their return has enraged shellfish divers who see the marine mammal's legendary appetite as a threat to their livelihoods. Explore the controversy surrounding the sea otter's recovery and the challenges of coexisting with this charismatic creature.
Fungi are more than just pizza toppings or irritants like athlete's foot. They are a distinct life-form that plays a vital role in the health of our planet. Fungi can absorb oil spills, control insects' brains, and produce life-saving medicines like penicillin. They are also eco-warriors, essential to healthy soil and trapping CO2, potentially solving global warming on their own. Fungi are neither plant nor animal, but are genetically closer to animals than plants. They form dense fungal networks called mycelium, which plants use to communicate with each other. Fungi can also employ other organisms, like leaf-cutter ants, to do their work for them. Fungi are fascinating and adaptable, and there is still much we have yet to learn about them. By exploring the world of fungi, you can become a real fun-guy at parties and gain a deeper understanding of the world around you.
Chemical fertilizers are widely used in modern agriculture to boost crop yields. However, these fertilizers are not without risk. In this write-up, we will explore the dangers of chemical fertilizers, including their impact on the environment and human health. We will also examine the alternatives to chemical fertilizers and the role of specific academics in this field. Chemical fertilizers can have a negative impact on the environment, particularly when they are not used in moderation. Excessive use of nitrogen fertilizers can lead to nitrate pollution in waterways, harming aquatic life and posing risks to human health. This pollution can also contribute to algal blooms, which can lead to the formation of dead zones in water bodies. In addition, the production and use of chemical fertilizers can contribute to greenhouse gas emissions, exacerbating climate change. The negative impacts of chemical fertilizers are also beyond human health. Exposure to high levels of fertilizer dust can cause respiratory problems, while exposure to nitrates in drinking water has been linked to an increased risk of certain types of cancer. Pesticides that are often used in conjunction with chemical fertilizers can also pose risks to human health. There are a number of alternatives to chemical fertilizers that can reduce their negative impact. These include organic and natural fertilizers, such as compost and manure, as well as crop rotation and cover crops. In addition, precision agriculture techniques can help farmers apply fertilizers more efficiently and effectively, reducing the risk of pollution. Leading academics in the field of sustainable agriculture have made significant contributions to our understanding of the dangers of chemical fertilizers and the alternatives that exist. For example, Dr. David Montgomery, a geologist at the University of Washington, has written extensively on the impact of industrial agriculture on soil health, and the benefits of regenerative agriculture practices. Similarly, Dr. Rattan Lal, a soil scientist at Ohio State University, has focused on the use of carbon sequestration techniques in agriculture to reduce greenhouse gas emissions. Chemical fertilizers pose a significant risk to the environment and human health, but there are alternatives that can be used to reduce these risks. By exploring the work of leading academics in the field, we can gain a deeper understanding of these issues and work to promote sustainable agriculture practices.
As a student, you might have heard about the importance of reducing your carbon footprint to help combat climate change. One way to do this is by cutting down on the amount of meat you eat. Did you know that approximately 15% of all greenhouse gas emissions from humans come from livestock production? By reducing our meat consumption, we could significantly reduce these emissions. Not only that, meat and dairy production take up a lot of land, around 80% of all farmland! However, not all meat is created equal. Large-scale farming of beef has a particularly high impact, whereas small-scale farming of animals can have a lower environmental footprint. Vegan alternatives can also come with their own set of problems, but a plant-based diet can bring several positive health benefits. By changing how we look at food and eat it sustainably, we could potentially change the world.
Transform farmland into thriving habitats for nature while hitting UK's climate and biodiversity targets at half the cost? Yes, it's possible! A new study by leading universities shows incentivizing farmers to spare land for habitats is a cost-effective solution.
Pollinators, such as bees and butterflies, are essential to our planet's biodiversity. They facilitate the reproduction of flowering plants, which in turn support other wildlife and contribute to the overall health of ecosystems. Sadly, pollinators face numerous threats, including habitat loss, pesticides, and climate change. In this write-up, we'll explore the vital role of pollinators in biodiversity conservation, as well as the challenges they face. First, let's define biodiversity. It refers to the variety of life on Earth, including different species, ecosystems, and genetic diversity within species. Pollinators play a crucial role in maintaining this diversity by helping plants reproduce. Over 75% of the world's food crops depend on pollinators, and they also support the growth of wildflowers and other plants that provide habitat for other animals. But pollinators are in trouble. According to the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), over 16% of vertebrate pollinators, such as birds and bats, are threatened with extinction. In addition, around 40% of invertebrate pollinator species, such as bees and butterflies, are facing the same fate. One leading academic in this field is Dr. Dave Goulson, a professor of biology at the University of Sussex. He has conducted extensive research on the importance of pollinators and the threats they face. In his book, "The Garden Jungle," he emphasizes the role of urban gardens in supporting pollinators and other wildlife. Another academic, Dr. Rachael Winfree from Rutgers University, has studied the impact of habitat fragmentation on pollinator communities. Her research shows that smaller patches of habitat can still support pollinators, but it's crucial to have a diversity of plants and habitats available. So, what can we do to help pollinators? There are many actions we can take, from planting pollinator-friendly gardens to reducing pesticide use. We can also support organizations that work to protect pollinators, such as the Xerces Society and the Pollinator Partnership. In conclusion, pollinators play a vital role in maintaining biodiversity, but they face numerous threats. By learning more about pollinators and taking action to protect them, we can help to ensure a healthy and diverse planet for future generations.
Did you know that approximately 40% of the global fish catch is discarded as bycatch, unintentionally caught fish that are not the target of the fishing operation? This means that a significant amount of fish, which could be used for food and other purposes, is being wasted. Fortunately, researchers and industry leaders are coming up with innovative solutions to turn bycatch into valuable resources. Bycatch can be transformed into fish meal, used as fertilizer, or even turned into high-end seafood products. One of the leading experts in this field is Dr. Daniel Pauly, a fisheries scientist and professor at the University of British Columbia. Dr. Pauly is known for his work on developing methods to estimate global fish catches, and he has also been a vocal advocate for reducing bycatch and promoting sustainable fishing practices. Another academic making significant contributions in this area is Dr. Karin Limburg, a fisheries biologist and professor at the SUNY College of Environmental Science and Forestry. Dr. Limburg has researched the use of bycatch for fertilizer and has found that it can be a valuable source of nutrients for crops. In addition to these experts, industry leaders such as FishWise, a nonprofit seafood sustainability consultancy, are also working to reduce bycatch and promote sustainable fishing practices. They work with major seafood retailers and distributors to improve the sustainability of the seafood supply chain. By exploring this topic further, you can develop a deeper understanding of the complex issues facing our oceans and contribute to finding innovative solutions for a more sustainable future.
Plants have been evolving for millions of years and have developed incredible adaptations to survive in their environments. One of the most impressive adaptations is drought resistance. In this write-up, we will explore the fascinating world of plant evolution and the incredible ways that plants have adapted to survive in dry environments. Did you know that there are plants that can survive without water for years? The cactus is one such plant that has developed unique adaptations to survive in the harsh desert environment. Its thick stems store water, and its shallow roots can quickly absorb moisture when it rains. The cactus also has small leaves that reduce water loss through transpiration and spines that provide shade to the stem, reducing water loss even further. Another interesting example of drought resistance in plants is the succulent. Succulents store water in their leaves, which become plump when water is available and shrink when water is scarce. They also have shallow roots that spread widely to quickly absorb moisture when it rains. Leading academics in the field of plant evolution and drought resistance have made significant contributions to our understanding of these adaptations. For example, Dr. Christine A. Beveridge has studied the molecular mechanisms behind drought resistance in plants and have identified genes that play a crucial role in this process. Her work has led to the development of drought-resistant crops, which have the potential to improve food security in dry regions. In conclusion, the world of plant evolution and drought resistance is full of fascinating facts, stories, and examples. By exploring this topic independently, students can deepen their understanding of the amazing adaptations that plants have developed over millions of years to survive in their environments.
Seaweed may be the future of sustainable and nutritious food. As the global population continues to grow and traditional agriculture methods take a toll on the environment, seaweed could be a more efficient and eco-friendly option. Researchers are exploring the potential of seaweed not only as a food source, but also as a tool to combat climate change. Companies like Dutch Weed Burger, AKUA, and Umaro Foods are already developing plant-based alternatives to meat and dairy using seaweed, which is high in nutrients and can be grown without land or fresh water.
Agriculture, forestry, and land-use change account for over 25% of global greenhouse gas emissions. A new report identifies the top 25 measures to reduce on-farm emissions and provides concrete guidance for policy makers, agriculture players, and academics to spur the necessary change in the agriculture sector. Discover the challenges and opportunities for the agricultural sector to reduce emissions and contribute to humanity's success during this crucial window for action.
Pesticides not targeted at flowers may pose a hidden threat to pollinators, according to new research from Trinity and DCU. The study, the first of its kind in Ireland, found residues of several pesticides in the nectar and pollen of both crop and wild plants, with some chemicals lingering for years after application. The findings have implications for the health of bees and other pollinators, as well as for ecosystem function, crop production, and human health.
Pesticides are ubiquitous in modern agriculture, but their detrimental effects on human health and the environment are becoming increasingly evident. A new approach, called regenerative agriculture, is emerging as a sustainable and healthier alternative. Biological farming practices like those of Tim Parton, a UK farm manager, prioritise soil and environmental health by minimising synthetic inputs, and have led to increased biodiversity and crop yields without the need for harmful chemicals. However, while the environmental and health benefits of regenerative agriculture are clear, the transition away from pesticide-dependent farming remains a challenge for many.
Have you ever heard of growing plants without soil? It's possible with hydroponics and aquaponics! These innovative methods of agriculture have gained popularity in recent years for their ability to produce high yields of fresh produce while using less space, water, and pesticides than traditional farming. In this write-up, we'll explore the fascinating world of hydroponics and aquaponics, diving into the concepts, benefits, and contributions from leading academics in the field. Hydroponics is the practice of growing plants in nutrient-rich water instead of soil. This method can be done in a variety of ways, from a simple jar with water and plant roots to complex systems using pumps, pipes, and controlled environments. Aquaponics takes it a step further by combining hydroponics with fish farming. In this closed-loop system, fish waste provides nutrients for plants, while plants naturally filter and clean the water for the fish. Did you know that hydroponics and aquaponics can yield up to 10 times more produce than traditional farming methods? This is because the plants receive precisely the nutrients they need, and water is recycled efficiently. Additionally, these methods can be done year-round, in any climate, and with less land space. It's no wonder that hydroponics and aquaponics are gaining attention from both commercial farmers and hobbyists alike. One leading academic in this field is Dr. Dickson Despommier, a professor at Columbia University. He's written extensively on vertical farming, an innovative form of agriculture that takes hydroponics to new heights by stacking layers of plants vertically. Another notable academic is Dr. Rakocy from the University of the Virgin Islands, who pioneered the development of modern aquaponics in the 1980s. In conclusion, hydroponics and aquaponics offer an innovative and sustainable solution to traditional farming methods. With its ability to produce more fresh produce with less resources, it's no wonder why this field is gaining traction. By exploring this topic further, you can discover new and exciting ways to apply academic concepts to real-world problems.
Activities
People and Organizations