Article
More like this
A team of researchers from UCLA has developed a new remote diagnostic technique that overcomes bias against darker skin tones in heart rate measurements. By combining the light-based measurements of a camera with radio-based measurements from radar and refining them through machine learning, the new technique improves the accuracy and fairness of heart rate readings for patients across a wide variety of skin tones. The study's findings, recently published in the journal ACM Transactions on Graphics, offer a promising path toward achieving more accurate and equitable remote technologies that can be used to remotely monitor patients both in clinical settings and from patients’ homes.
Are you fascinated by the inner workings of the human body and want to play a crucial role in diagnosing and treating illnesses? Look no further than the field of radiography! Radiography is the study of medical imaging, using X-rays, CT scans, MRIs, and other techniques to create images of the body's internal structures. It's a vital field that helps doctors detect and diagnose a wide range of medical conditions, from broken bones to cancer. In recent years, radiography has seen some exciting innovations and breakthroughs. For example, researchers are exploring the use of AI and machine learning to improve the accuracy and speed of medical imaging. And new techniques like 3D printing are allowing doctors to create custom implants and prosthetics for their patients. At the undergraduate level, students can expect to take courses in anatomy, physiology, medical terminology, and of course, radiographic imaging techniques. Many programs also offer clinical rotations, giving students hands-on experience working with patients and medical professionals. After graduation, there are a wide range of career paths available to radiography majors. Some graduates go on to become radiologic technologists, performing diagnostic imaging procedures like X-rays and CT scans. Others become radiation therapists, using radiation to treat cancer and other diseases. And still others go on to become medical physicists, working to develop and improve medical imaging technology. There are many potential employers for radiography graduates, including hospitals, clinics, and private imaging centers. Some notable examples include the Mayo Clinic, Johns Hopkins Hospital, and Memorial Sloan Kettering Cancer Center. To succeed in radiography, students should have a strong background in science and math, as well as excellent communication skills and attention to detail. If you're passionate about healthcare and interested in a challenging and rewarding career, radiography may be the perfect field for you.
Uncover the Divine Power of Artificial Intelligence: Meet Sybil, the new AI tool for predicting lung cancer risk developed by researchers at MIT, Mass General Cancer Center and Chang Gung Memorial Hospital.
Stanford researchers have developed a smart bandage that painlessly falls away from the skin and tracks signs of recovery and infection. It even responds with electrical stimulation to hasten healing. The bandage resulted in 25% faster healing, greater blood flow to injured tissue, and less scarring in animal studies. The bandage is just one example of how Stanford researchers combine organic chemistry and novel materials to reimagine medical devices in more powerful, personal, and unobtrusive ways.
Have you ever had a moment of inspiration that led to a groundbreaking invention? In 1816, a doctor named René Laennec had just that moment while walking through Paris. He observed children using a long piece of wood to amplify sound and later used this concept to create the stethoscope. By placing a rolled-up sheet of paper to a young woman's chest, he was able to hear her heartbeat with clarity. Laennec spent three years perfecting his invention, which eventually became the forerunner to the stethoscopes we still use today. Learning about the development of the stethoscope not only expands your knowledge of medical history but also inspires you to think creatively and use everyday observations to solve complex problems.
Electronic waste is not just trash, it's a treasure trove of precious metals like gold! Researchers at the University of Cagliari and Imperial College London have found a way to extract gold from electronic waste and use it as a catalyst in making medicines. This not only prevents gold from being lost in landfills but also reduces our dependence on environmentally harmful mining practices.
In "The Patient Will See You Now," Eric Topol, a top physician, reveals how smartphones and artificial intelligence could revolutionize the healthcare system. No more waiting for months to see a doctor, only to be seen for 15 minutes and receive a hefty bill. Instead, using your smartphone, you could receive rapid test results, monitor your vital signs, and receive a diagnosis without ever seeing a doctor. Topol argues that medicine has been digitized and will now be democratized, with computers replacing physicians for many diagnostic tasks. This thought-provoking book is a must-read for anyone who believes they deserve better healthcare. Recommended for healthcare professionals, patients, and anyone interested in the intersection of technology and medicine, "The Patient Will See You Now" offers a glimpse into the future of healthcare. The book discusses how smartphones and artificial intelligence can empower patients, democratize medicine, and ultimately lead to better, cheaper, and more human healthcare. The topics covered in the book are relevant to a wide range of fields, including medicine, technology, public health, and policy. It is also a great read for anyone who wants to learn about the potential benefits and challenges of digitized medicine, and how it could transform the healthcare system.
Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, making it easier for patients to receive the medicine they need to manage their symptoms. But how do these devices work, and what scientific principles underlie their design? At the heart of an inhaler is the aerosol, a fine mist of medication that is delivered directly to the lungs. To create this mist, inhalers use a propellant, which expands rapidly upon release, creating a burst of pressure that forces the medication out of the device and into the airways. One key challenge in designing inhalers is ensuring that the aerosol particles are small enough to be easily inhaled, yet large enough to deposit effectively in the lungs. This is where the science of aerodynamics comes into play, as researchers work to optimize the shape and size of the particles to achieve the ideal balance of delivery efficiency and patient comfort. Recent advancements in inhaler technology have led to the development of smart inhalers, which use sensors and digital connectivity to monitor patient use and provide personalized feedback and reminders. This innovation has the potential to improve patient adherence and outcomes, and is just one example of how inhaler delivery systems continue to evolve and improve. Leading academics in the field include Dr. Richard Costello, a respiratory physician and clinical scientist at the Royal College of Surgeons in Ireland, and Dr. Omar Usmani, a consultant physician in respiratory medicine at the Royal Brompton Hospital and professor of respiratory medicine at Imperial College London. These experts have contributed to important research on inhaler technology and the treatment of respiratory diseases, and continue to drive innovation in the field. Inhaler delivery systems have revolutionized the treatment of respiratory illnesses, allowing patients to manage their symptoms with greater ease and precision. By understanding the science behind aerosol medicine and the principles that underlie inhaler design, we can appreciate the incredible innovation that has made this possible.
Are you interested in the intersection of healthcare and technology? Do you want to be a part of the ever-evolving field of healthcare innovation? Look no further than the exciting field of Health Informatics. Health Informatics is the study of how information technology can be used to improve healthcare outcomes. This field is all about using data and technology to make healthcare more efficient, effective, and accessible. From electronic medical records to telemedicine, Health Informatics is transforming the way we approach healthcare. One of the most interesting aspects of Health Informatics is the potential for real-world impact. For example, Health Informatics has been used to improve patient outcomes in a variety of settings. In one study, researchers used Health Informatics to reduce the number of medication errors in a hospital by 80%. In another study, Health Informatics was used to improve the accuracy of cancer diagnoses, leading to more effective treatment. The field of Health Informatics is also home to some of the most innovative research and academic discourse in healthcare. From machine learning algorithms to wearable technology, Health Informatics is constantly pushing the boundaries of what is possible in healthcare. At the undergraduate level, students can expect to take courses in areas such as healthcare data analytics, health information systems, and electronic health records. With further specialisation, students can explore areas such as clinical decision support systems or health information privacy and security. The potential career paths for graduates of Health Informatics are vast and exciting. Graduates can work in a variety of settings, including hospitals, government agencies, and private companies. Some of the most notable employers in the field include Microsoft, Cerner, and Epic Systems. To succeed in Health Informatics, students should have a strong interest in healthcare and technology. They should also possess strong analytical skills and a passion for problem-solving. With a degree in Health Informatics, you can be a part of the exciting and rapidly growing field of healthcare innovation.
Blindness doesn't stop people from having interests, passions, and desires. In fact, losing one sense can lead to a sharpening of others, as blind people learn to rely on their hearing, touch, and other senses. They still care about their appearance, their love for shopping, and still have hobbies like makeup and beauty. Blind people can work and lead fulfilling lives, and they appreciate kindness and support from others. As a student, learning about different experiences and perspectives can broaden your understanding of the world and help you develop empathy and respect for others. Exploring academic topics related to disability and accessibility can also prepare you for a more inclusive and equitable future, whether you pursue a career in medicine, technology, or social justice.
Are you fascinated by the intersection of physics and medicine? Do you want to be involved in developing life-saving technologies and treatments? Look no further than the exciting field of Medical Physics! Medical Physics is a dynamic and rapidly growing field that applies the principles of physics to healthcare. From developing new imaging techniques to designing radiation therapy treatments, Medical Physicists play a critical role in improving patient outcomes. One of the most appealing aspects of Medical Physics is the opportunity to work on cutting-edge research and innovation. Medical Physicists are at the forefront of developing new technologies like proton therapy, which uses high-energy particles to precisely target cancer cells while minimizing damage to healthy tissue. They also work on developing advanced imaging techniques like Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), which help doctors diagnose and treat a wide range of diseases. Some of the most inspiring academic discourse in Medical Physics comes from the work of Nobel laureate Marie Curie, who discovered the elements radium and polonium and pioneered the use of radiation in medicine. Other notable figures in the field include John Cameron, who developed the first CT scanner, and Rosalyn Yalow, who co-invented the radioimmunoassay technique for measuring hormones and drugs in the body. At the undergraduate level, typical majors and modules in Medical Physics include anatomy and physiology, radiation biology, medical imaging, and radiation therapy. Students can also specialize in areas like nuclear medicine, radiation safety, and medical device design. Real-life examples of exciting specializations include developing new methods for detecting cancer using nanotechnology, designing prosthetics using 3D printing, and developing new imaging techniques that use light instead of radiation. The potential for future jobs and roles in Medical Physics is vast and varied. Graduates can work in hospitals and clinics, research labs, medical device companies, and government agencies. Key industries for prospective future employment include healthcare, pharmaceuticals, and medical devices. Notable potential employers include the National Institutes of Health, the Centers for Disease Control and Prevention, and major medical device companies like Medtronic and GE Healthcare. To succeed in Medical Physics, students should have a strong foundation in physics and mathematics, as well as an interest in healthcare and technology. Excellent problem-solving skills, attention to detail, and a commitment to patient safety are also essential. So if you're looking for a career that combines cutting-edge research, innovation, and the opportunity to make a real difference in people's lives, consider studying Medical Physics.
Victor Damptey's passion for Spanish and medicine led him to explore the intersection of language and healthcare. From creating a music therapy program for dementia patients to developing medical interpreting courses, Damptey's journey highlights the importance of communication in providing quality healthcare. Discover how he plans to use his language skills to address disparities in healthcare as a future physician-scientist.
The story of the creation of the Band-Aid in the 1920s highlights the importance of innovation and problem-solving. Earle Dickson, an employee at Johnson and Johnson, saw a need for a small adhesive bandage for his accident-prone wife and came up with a solution using the company's sterile gauze and adhesive strips. His invention became a household item and has since been produced in the billions. This story shows how simple solutions to everyday problems can lead to great success. As students, developing problem-solving skills and creativity can benefit both intellectually and practically in future careers and personal life. The Band-Aid story is a reminder that innovation can come from anyone and encourages us to explore our own ideas and solutions to problems we encounter.
Are you interested in learning about a new antimicrobial coating material that can effectively kill bacteria and viruses, including MRSA and Covid-19? Researchers at the University of Nottingham's School of Pharmacy have used a common disinfectant and antiseptic to create this new material that could be used as an effective antimicrobial coating on a range of plastic products. This new study, published in Nano Select, offers an effective way to prevent the spread of pathogenic microorganisms and address the ever-increasing threat of antimicrobial resistance. Read more to find out how this material was created and how it can help in hospital settings.
Have you ever wondered how machines can learn and make decisions on their own? If you're fascinated by the idea of artificial intelligence and want to be at the forefront of technological advancement, then a career in Neural Networks might be perfect for you! Neural Networks is a field of study that involves designing and developing computer systems that can learn and adapt on their own, similar to the way the human brain works. It's a rapidly growing field with endless possibilities, and it's changing the way we live and work. As a Neural Network expert, you'll have the opportunity to work on exciting projects like self-driving cars, voice recognition systems, and even medical diagnosis tools. Imagine being able to create a computer system that can diagnose diseases with the same accuracy as a human doctor! Typical duties in this field include designing and developing algorithms, testing and evaluating systems, and implementing machine learning models. There are also various areas of specializations within the field, including deep learning, natural language processing, and computer vision. To become a Neural Network expert, you'll need a strong foundation in mathematics, computer science, and statistics. Popular undergraduate programs and majors include Computer Science, Mathematics, and Electrical Engineering. Helpful personal attributes for this field include strong analytical skills, problem-solving abilities, and creativity. You'll need to be able to think outside the box and come up with innovative solutions to complex problems. Job prospects in Neural Networks are excellent, with a projected growth rate of 22% between 2019 and 2029. There are many potential employers in both the public and private sectors, including tech giants like Google, Microsoft, and Amazon. Other notable employers include healthcare organizations, financial institutions, and government agencies. In conclusion, a career in Neural Networks is an exciting and rewarding field that offers endless opportunities for growth and innovation. If you're passionate about technology and want to make a difference in the world, then this might just be the perfect career for you!
Are you looking for a career that offers excitement, challenges, and the opportunity to serve your country? Then a career in Military Service might just be the perfect fit for you! In Military Service, you'll have the chance to work in a variety of roles, from combat to logistics, and everything in between. You'll be part of a team that is dedicated to protecting your country and its citizens, and you'll have the chance to make a real difference in the world. As a member of the military, you'll be responsible for a wide range of duties, depending on your role and area of specialization. Some of the most common duties include training and preparing for combat, providing logistical support to troops in the field, and performing humanitarian missions around the world. If you're interested in pursuing a career in Military Service, there are a variety of educational and training options available to you. Many military careers require a high school diploma or equivalent, while others may require a college degree in a specific field, such as engineering or medicine. Some popular undergraduate programs and majors for those interested in Military Service include ROTC programs, engineering, computer science, nursing, and international relations. In addition to the right education and training, there are a number of personal attributes that can help you succeed in a career in Military Service. These include a strong sense of discipline, physical fitness, leadership skills, and a willingness to work hard and take on new challenges. So if you're looking for a career that offers excitement, challenge, and the chance to make a real difference in the world, consider a career in Military Service. With the right education, training, and personal attributes, you can succeed in this exciting and rewarding field.
As a high school student, you may feel like your dreams are out of reach, especially if you face challenges like dyslexia or come from a background where few people pursue higher education. But the stories of three black scientists can inspire you to believe in yourself and your potential to make a difference. Alan Powell Goffe, Dr. Asmeret Asefaw Berhe, and Kayisha Payne all overcame obstacles to become pioneers in their fields. Goffe's work on vaccines saved countless lives, Berhe's research on landmines could feed millions, and Payne's work on drug development is helping combat COVID-19. By reading about their accomplishments, you can learn about important scientific concepts and gain insight into how to pursue your own passions. Plus, you'll see that diversity in STEM is important and achievable. These scientists didn't just dream of a better future, they made it a reality. Who knows what you can achieve?
Did you know that ancient Greeks potentially built ramps at their temples to ensure visitors with impaired mobility could access sacred sites? Classicist Debby Sneed developed this theory by visiting archaeological sites across Greece and examining archaeological and written evidence. This evidence indicates that the Greeks recognized physical disability and built spaces for disabled people. Discover more about this fascinating insight into ancient Greek culture and their approach to accessibility.
Are you a beach lover who faces mobility challenges? Greece has got you covered! The country is installing free, wheelchair-friendly ramps at 287 beaches as part of a $16.5 million project that aims to give everyone equal access to the sea. The centerpiece of the project is a remote-operated ramp called Seatrac that can move beach-goers into the water. With this initiative, Greece is enhancing the quality of life for everyone and making its tourist attractions more accessible. Check out the dedicated website to explore all the beaches where Seatracs have been installed. Don't miss out on this incredible opportunity to enjoy the sea with family and friends!
A team at Massachusetts General Hospital has developed an AI-powered method to detect Alzheimer's disease with 90% accuracy using routinely collected clinical brain images. The model is blind to features of the brain associated with age and can detect Alzheimer's regardless of other variables. The study made substantial steps toward performing this in real-world clinical settings, making a strong case for clinical use of this diagnostic technology.
Activities
People and Organizations