Article
More like this
Singapore's national flower, Papilionanthe Miss Joaquim, has had its entire genetic blueprint decoded, revealing natural products with antioxidant properties and distinctive colors. The study, published in Communications Biology, could lead to future research in gene and metabolite engineering, as well as the discovery of bioactive compounds for healthcare purposes. The collaboration between A\*STAR's Genome Institute of Singapore and SingHealth Duke-NUS Institute of Biodiversity Medicine showcases the power of genetic sequencing technology in preserving and studying Singapore's plant biodiversity.
The world of science is constantly evolving, and with it comes new discoveries that can benefit humanity. However, there are also risks associated with scientific research, particularly in the field of biotechnology. Gain of function work involves manipulating the DNA of microorganisms to give them new abilities, which can be used in vaccine production and cancer treatments. However, this work also includes engineering superbugs that could cause a global pandemic if they escape from the lab. While virologists argue that this research could help us prepare for future pandemics, critics believe that the risks outweigh the benefits. To minimize the risk of lab leaks, experts suggest creating international databases of leaks, near-misses, and fixes, as well as developing a robust pandemic early warning system. As students, it is important to understand the benefits and risks of scientific research and to be aware of the measures being taken to minimize the risks associated with it.
Learning about the chemistry of onions may not seem like the most exciting academic topic, but it can help you understand how things work in the world around you. When you chop an onion, you're changing its chemistry and releasing a gas that causes your eyes to water. You can slow down the onion's enzymes by storing it in the fridge or boiling it briefly, or you can wear goggles or sunglasses while cutting it. Scientists are even working on creating tear-free onions through genetic modification and traditional plant breeding. Learning about the chemistry of onions can help you appreciate the complexities of the natural world and give you practical skills for your everyday life.
Have you ever wondered why a black eye turns blue, then green, then yellow, and finally brown before disappearing? It's all because of your hemoglobin, the compound in red blood cells that brings oxygen to your body. When you get hit, the blow crushes tiny blood vessels called capillaries, and red blood cells ooze out of the broken capillaries into the surrounding tissue. From the outside of your skin, this mass of cells looks bluish-black, which is where we get the term, "black and blue". Learning about hemoglobin and how it works in your body can be fascinating and practical knowledge that can help you understand how your body works. It's an example of how exploring academic topics through reading, reflection, and writing can inspire you to learn more about the world around you.
In just a few thousand years, northern Europeans evolved to digest milk, a feat that was once impossible for adult humans. Scientists now believe that exceptional stressors like famines and pathogens may have driven this genetic change, making the ability to digest milk extra valuable. This study, published in Nature and led by experts from the University of Bristol and University College London, sheds light on the evolution of lactose tolerance and rewrites the textbooks on why drinking milk was an advantage.
Are you curious about the tiny viruses that inhabit your body? MIT Technology Review's biotech newsletter, The Checkup, explores the world of bacteriophages, or "phages" for short. These microscopic viruses have the potential to treat bacterial infections, but they've been largely abandoned in favor of antibiotics. With antimicrobial resistance on the rise, interest in phage therapy is making a comeback. Learn about the diversity and specificity of phages, and how they could be engineered to target specific bacteria. Discover the potential of phage therapy and the challenges that need to be overcome in this fascinating article.
The human body is made up of trillions of cells, with each cell originating deep within our bones. The porous nature of bones allows for large and small blood vessels to enter, with the hollow core of most bones containing soft bone marrow. This marrow is essential, containing blood stem cells that constantly divide and differentiate into red and white blood cells and platelets, sending billions of new blood cells into circulation every day. Blood cancers often begin with genetic mutations in these stem cells, which can result in malignant blood cells. For patients with advanced blood cancers, the best chance for a cure is often an allogeneic bone marrow transplant. This procedure involves extracting blood stem cells from a donor and infusing them into the patient's body, leading to the regeneration of healthy blood cells. While bone marrow transplants come with risks, including graft-versus-host disease, it is crucial to find the best match possible for the recipient. Donor registries offer hope to those without a matched family member. Learning about the importance of bone marrow and stem cells can inspire students to explore the fascinating world of human biology and potentially make a difference in someone's life through donation.
Mitochondria are often referred to as the powerhouses of the cell and for good reason. These tiny organelles are responsible for producing the energy that our cells need to function. In this write-up, we'll explore the magic of mitochondria and why they are so important to our health and well-being. Did you know that mitochondria are sometimes referred to as the "second genome"? This is because they have their own DNA and can replicate independently of the cell's nucleus. This discovery, made by Dr. Douglas C. Wallace in the late 1970s, revolutionized our understanding of cellular biology. Another interesting fact about mitochondria is that they are thought to have originated from a symbiotic relationship between early cells and primitive bacteria. Over time, the two organisms evolved together to form the cells that make up our bodies today. This theory, known as the endosymbiotic theory, was first proposed by Dr. Lynn Margulis in the 1960s. So, what exactly do mitochondria do? Well, they are responsible for producing energy in the form of ATP (adenosine triphosphate) through a process called cellular respiration. This energy is then used by our cells to carry out all of their functions, from moving and growing, to repairing and reproducing. It's important to note that our cells can't survive without energy, and without mitochondria, we wouldn't be able to produce enough energy to support our bodies. This is why mitochondria are so critical to our health and well-being. By learning more about the magic of mitochondria, you'll gain a deeper understanding of cellular biology and the role that these tiny organelles play in our lives. So, get reading, reflecting, and exploring!
Researchers have identified lipid differences in patients with alcohol-related liver disease that could lead to earlier detection and new treatments. Sphingomyelins were found to be significantly reduced in scarred liver tissue, potentially serving as a biomarker for ALD. Learn more about this breakthrough research and its implications for the diagnosis and treatment of ALD.
Have you ever wondered what it would be like to hibernate like a bear? Well, what if we told you that human hibernation could be the key to long-distance space travel? In this fascinating article from BBC, explore the possibility of astronauts hibernating on their way to Mars, and the benefits it could have on their physical and mental health, as well as the overall mission. Discover how animals like bears and squirrels have already shown resistance to the harmful effects of space travel through hibernation, and how scientists are exploring ways to induce a torpor-like state in humans. Don't miss out on this intriguing read!
Understanding the blueprint of life is essential to understanding how our bodies work. DNA, genes, and chromosomes are the building blocks that make up this blueprint. DNA is the most basic level and is made up of nucleotides arranged along a sugar backbone. Genes are long snippets of DNA that contain information about building proteins and are the most basic units of inheritance. Chromosomes are long strands of DNA wrapped around proteins called Histones and contain many genes. The body uses acetylation to control the production of proteins. Understanding these concepts can help you understand how traits are passed down and how the body makes an estimated one million proteins from only twenty thousand genes. Knowing the blueprint of life will help you understand how your body works and give you a foundation for further scientific exploration.
Have you ever wondered what happens to your blood after it's drawn at the doctor's office? Or how doctors diagnose illnesses and diseases? Enter the world of Medical Laboratory Science, where the magic happens behind the scenes. As a Medical Laboratory Scientist, your role is crucial in the healthcare industry. You'll use advanced laboratory techniques and equipment to analyze patient samples, such as blood, tissue, and bodily fluids, to help diagnose and treat diseases. You'll work with a team of healthcare professionals, including doctors and nurses, to provide accurate and timely results that inform patient care. But what makes this career so appealing? For starters, it's a constantly evolving field. With new technologies and discoveries, you'll always be learning and adapting to stay at the forefront of your profession. Plus, you'll have the satisfaction of knowing that your work directly impacts patient outcomes and helps save lives. In terms of duties, Medical Laboratory Scientists can specialize in a variety of areas, such as microbiology, hematology, or immunology. You may also work in related fields, such as research or public health. Typical tasks include analyzing samples, interpreting results, and communicating findings to healthcare providers. To become a Medical Laboratory Scientist, you'll need at least a Bachelor's degree in Medical Laboratory Science or a related field. Popular undergraduate programs include Biology, Chemistry, and Medical Technology. You'll also need to complete a clinical rotation and pass a certification exam. Helpful personal attributes for this career include attention to detail, critical thinking skills, and the ability to work well under pressure. You'll also need strong communication skills to effectively communicate with healthcare providers and patients. Job prospects for Medical Laboratory Scientists are strong, with a projected growth rate of 11% from 2018 to 2028. You can find job opportunities in a variety of settings, including hospitals, clinics, research labs, and government agencies. Notable employers include Mayo Clinic, Quest Diagnostics, and the Centers for Disease Control and Prevention. So if you're interested in a career that combines science, technology, and healthcare, consider exploring the world of Medical Laboratory Science. Who knows - you could be the next person to discover a life-saving breakthrough!
Did you know that bioreactor technology is revolutionizing the way we grow nutritious plants? Bioreactors are closed systems that use microorganisms, plant cells, or animal cells to produce a wide range of products, including food, drugs, and biofuels. With bioreactors, we can grow plants in a controlled environment, without the use of pesticides or fertilizers, and harvest them year-round. One of the most exciting applications of bioreactor technology is the cultivation of superfoods. These are foods that are nutrient-dense and have a host of health benefits, such as kale, spinach, and broccoli. By growing these plants in bioreactors, we can increase their nutritional content and make them more widely available. One example of this is how researchers at Flinders University's Centre for Marine Bioproducts Development are using bioreactors to cultivate marine microalgae, which can be turned via advanced cultivation strategies into various proteins. Cultivating microalgae is more eco-friendly than rearing animals, and may be a way to reduce the need for meat proteins, thus helping to save the environment. Another example is the use of plant cell cultures in bioreactors to produce plant-based meat alternatives. Mark Post, a pharmacologist and professor at Maastricht University in the Netherlands, has developed a process for growing "cultured meat", where animal cells are cultivated in vitro. This technology could revolutionize the meat industry, reducing the environmental impact of animal agriculture and improving animal welfare. But bioreactor technology isn't just for growing food. It's also being used to produce drugs, such as insulin, and to clean up pollution. In fact, another crucial form of bioreactor technology is bioremediation, which is the use of microorganisms to break down environmental contaminants. The future of bioreactor technology is exciting! Aside from its current uses, ongoing research probes at the possibility of bioreactors being used in cell therapy - growing healthy cells to replace diseased or damaged ones in patients. The possibilities are vast, so let's go ahead and dive into the exciting world of bioreactor technology!
Ancient Egyptian tombs reveal pots of honey, thousands of years old and still preserved. What makes honey such a special food? The answer lies in its chemical makeup and the alchemy of bees. Honey's longevity and acidic properties lend it medicinal qualities, making it a natural bandage and a barrier against infection for wounds. Discover the magic of honey and its perfect balance of hygroscopic and antimicrobial properties.
Chemotherapy is a type of cancer treatment that uses drugs to kill rapidly dividing cancer cells in the body. The drugs are delivered through pills and injections and are toxic to all cells in the body, including healthy ones. However, cancer cells are more susceptible to the effects of chemotherapy because they multiply rapidly. Chemotherapy drugs can damage hair follicles, cells of the mouth, gastrointestinal lining, reproductive system, and bone marrow, which can cause side effects such as hair loss, fatigue, infertility, nausea, and vomiting. Despite these side effects, chemotherapy has greatly improved the outlook for many cancer patients. Advances in treatment have led to up to 95% survival rates for testicular cancer and 60% remission rates for acute myeloid leukemia. Researchers are still developing more precise interventions to target cancer cells while minimizing harm to healthy tissues. Learning about chemotherapy can help high school students understand the science behind cancer treatment and the importance of ongoing research to improve outcomes for patients.
Discover the secret behind Gram-negative bacteria's armor-like outer membrane! A new study led by Professor Colin Kleanthous at the University of Oxford sheds light on how bacteria like E. coli construct their outer membrane to resemble body armor, with implications for developing antibiotics.
New research has identified gold-based compounds that could treat multidrug-resistant "superbugs", with some effectiveness against several bacteria. Antibiotic resistance is a global public health threat, and the development of new antibiotics has stalled. Gold metalloantibiotics, compounds with a gold ion at their core, could be a promising new approach. Dr. Sara M. Soto Gonzalez and colleagues studied the activity of 19 gold complexes against a range of multidrug-resistant bacteria isolated from patients. The gold compounds were effective against at least one bacterial species studied, with some displaying potent activity against several multidrug-resistant bacteria.
The world is still facing daily COVID-19 infections and the threat of virus mutation, but it's not too late to change the game. A pandemic vaccine alliance, similar to NATO, could be the solution to overcome the "free-rider problem" in global health efforts and ensure the world's biological security.
Did you know that low concentrations of chloride can produce a sweet taste sensation? Scientists from Okayama University in Japan have discovered a new mechanism for detecting chloride ions in taste buds, shedding light on how we perceive taste. Using mice models and structural biology methods, they found that chloride ions activate sweet receptors, similar to other taste substances. This study could lead to a better understanding of taste perception in organisms.
Cells are the fundamental units of life, driven by the forces of the universe, and are impossible machines. They are biological robots that follow their programming, which has evolved over billions of years. Your cells are mostly filled with water molecules and proteins, which are the dead things that make life happen. Cells speak the language of life, which is made up of proteins that are formed from amino acids. Amino acids are the alphabet of the language of life, and proteins are the words that form sentences called biological pathways. The language of life is complex, and mindless cells speak it through DNA, which contains instructions, genes, and building manuals for all the proteins your cells need to function. Understanding the language of life can help you appreciate the amazing complexity of cells and their role in keeping you alive.
Activities
Academic Extensions
Thought Experiments