Article
More like this
Cells are the fundamental units of life, driven by the forces of the universe, and are impossible machines. They are biological robots that follow their programming, which has evolved over billions of years. Your cells are mostly filled with water molecules and proteins, which are the dead things that make life happen. Cells speak the language of life, which is made up of proteins that are formed from amino acids. Amino acids are the alphabet of the language of life, and proteins are the words that form sentences called biological pathways. The language of life is complex, and mindless cells speak it through DNA, which contains instructions, genes, and building manuals for all the proteins your cells need to function. Understanding the language of life can help you appreciate the amazing complexity of cells and their role in keeping you alive.
Did you know that low concentrations of chloride can produce a sweet taste sensation? Scientists from Okayama University in Japan have discovered a new mechanism for detecting chloride ions in taste buds, shedding light on how we perceive taste. Using mice models and structural biology methods, they found that chloride ions activate sweet receptors, similar to other taste substances. This study could lead to a better understanding of taste perception in organisms.
Have you ever wondered how your genes determine your traits and characteristics? Do you have a passion for science and a desire to unravel the mysteries of life? If so, a career in geneticist might be just what you're looking for! Geneticists are scientists who study genes, heredity, and variation in living organisms. They use their knowledge of genetics to understand how traits are passed down from generation to generation, and how genetic mutations can lead to diseases and disorders. One of the most exciting aspects of being a geneticist is the potential to make groundbreaking discoveries that could change the course of medicine and science. For example, geneticists were instrumental in identifying the BRCA1 and BRCA2 genes, which are associated with an increased risk of breast and ovarian cancer. This discovery has led to new treatments and preventative measures for these diseases. As a geneticist, you'll have a variety of duties depending on your area of specialization. Some geneticists work in research labs, conducting experiments and analyzing data. Others work in clinical settings, helping patients to understand their genetic risks and providing counseling and support. There are also geneticists who work in agriculture, conservation, and forensics. To become a geneticist, you'll need to have a strong background in biology, chemistry, and mathematics. Most geneticists have at least a bachelor's degree in a relevant field, such as genetics, biology, or biochemistry. Some may also have a master's or doctoral degree, which can lead to more advanced research and teaching positions. In addition to a strong academic background, there are several personal attributes that can be helpful in a career in genetics. These include a curious and analytical mind, excellent communication skills, and a passion for learning and discovery. The job prospects for geneticists are strong, with a growing demand for their expertise in a variety of industries. Some notable employers of geneticists include pharmaceutical companies like Pfizer and Novartis, research institutions like the National Institutes of Health, and government agencies like the Centers for Disease Control and Prevention. So if you're interested in a career that combines your love of science with the potential to make a real difference in the world, consider becoming a geneticist. Who knows, you might just be the one to make the next groundbreaking discovery!
Do you ever wonder why orange juice tastes so bad after brushing your teeth? It turns out that our taste buds, which are made up of taste receptor cells, are responsible for identifying different tastes like sweet, bitter, and savory. Toothpaste contains Sodium Lauryl Sulphate (SLS), which creates foam while brushing and temporarily gets rid of the molecules that block our bitter receptors. This makes the receptor much more sensitive to bitter flavors, causing that awful taste. However, taste isn't just affected by our receptors. Temperature, texture, and smell can change what we sense too. Learning about the science of taste can help you understand why some foods taste the way they do and how to enhance your dining experience. So, next time you have OJ after brushing, try plugging your nose or go for a coffee or Bloody Mary instead.
Understanding the blueprint of life is essential to understanding how our bodies work. DNA, genes, and chromosomes are the building blocks that make up this blueprint. DNA is the most basic level and is made up of nucleotides arranged along a sugar backbone. Genes are long snippets of DNA that contain information about building proteins and are the most basic units of inheritance. Chromosomes are long strands of DNA wrapped around proteins called Histones and contain many genes. The body uses acetylation to control the production of proteins. Understanding these concepts can help you understand how traits are passed down and how the body makes an estimated one million proteins from only twenty thousand genes. Knowing the blueprint of life will help you understand how your body works and give you a foundation for further scientific exploration.
Chemotherapy is a type of cancer treatment that uses drugs to kill rapidly dividing cancer cells in the body. The drugs are delivered through pills and injections and are toxic to all cells in the body, including healthy ones. However, cancer cells are more susceptible to the effects of chemotherapy because they multiply rapidly. Chemotherapy drugs can damage hair follicles, cells of the mouth, gastrointestinal lining, reproductive system, and bone marrow, which can cause side effects such as hair loss, fatigue, infertility, nausea, and vomiting. Despite these side effects, chemotherapy has greatly improved the outlook for many cancer patients. Advances in treatment have led to up to 95% survival rates for testicular cancer and 60% remission rates for acute myeloid leukemia. Researchers are still developing more precise interventions to target cancer cells while minimizing harm to healthy tissues. Learning about chemotherapy can help high school students understand the science behind cancer treatment and the importance of ongoing research to improve outcomes for patients.
Learning about the chemistry of onions may not seem like the most exciting academic topic, but it can help you understand how things work in the world around you. When you chop an onion, you're changing its chemistry and releasing a gas that causes your eyes to water. You can slow down the onion's enzymes by storing it in the fridge or boiling it briefly, or you can wear goggles or sunglasses while cutting it. Scientists are even working on creating tear-free onions through genetic modification and traditional plant breeding. Learning about the chemistry of onions can help you appreciate the complexities of the natural world and give you practical skills for your everyday life.
Tardigrades, also known as water bears, can survive extreme environments by entering a state of suspended animation and revitalizing decades later, and a UCLA chemist used this mechanism to develop a polymer called pTrMA that stabilizes drugs at high temperatures and over extended periods. This innovation could improve drug access, reduce waste, and save lives.
In just a few thousand years, northern Europeans evolved to digest milk, a feat that was once impossible for adult humans. Scientists now believe that exceptional stressors like famines and pathogens may have driven this genetic change, making the ability to digest milk extra valuable. This study, published in Nature and led by experts from the University of Bristol and University College London, sheds light on the evolution of lactose tolerance and rewrites the textbooks on why drinking milk was an advantage.
Have you ever wondered what happens to your blood after it's drawn at the doctor's office? Or how doctors diagnose illnesses and diseases? Enter the world of Medical Laboratory Science, where the magic happens behind the scenes. As a Medical Laboratory Scientist, your role is crucial in the healthcare industry. You'll use advanced laboratory techniques and equipment to analyze patient samples, such as blood, tissue, and bodily fluids, to help diagnose and treat diseases. You'll work with a team of healthcare professionals, including doctors and nurses, to provide accurate and timely results that inform patient care. But what makes this career so appealing? For starters, it's a constantly evolving field. With new technologies and discoveries, you'll always be learning and adapting to stay at the forefront of your profession. Plus, you'll have the satisfaction of knowing that your work directly impacts patient outcomes and helps save lives. In terms of duties, Medical Laboratory Scientists can specialize in a variety of areas, such as microbiology, hematology, or immunology. You may also work in related fields, such as research or public health. Typical tasks include analyzing samples, interpreting results, and communicating findings to healthcare providers. To become a Medical Laboratory Scientist, you'll need at least a Bachelor's degree in Medical Laboratory Science or a related field. Popular undergraduate programs include Biology, Chemistry, and Medical Technology. You'll also need to complete a clinical rotation and pass a certification exam. Helpful personal attributes for this career include attention to detail, critical thinking skills, and the ability to work well under pressure. You'll also need strong communication skills to effectively communicate with healthcare providers and patients. Job prospects for Medical Laboratory Scientists are strong, with a projected growth rate of 11% from 2018 to 2028. You can find job opportunities in a variety of settings, including hospitals, clinics, research labs, and government agencies. Notable employers include Mayo Clinic, Quest Diagnostics, and the Centers for Disease Control and Prevention. So if you're interested in a career that combines science, technology, and healthcare, consider exploring the world of Medical Laboratory Science. Who knows - you could be the next person to discover a life-saving breakthrough!
The world of science is constantly evolving, and with it comes new discoveries that can benefit humanity. However, there are also risks associated with scientific research, particularly in the field of biotechnology. Gain of function work involves manipulating the DNA of microorganisms to give them new abilities, which can be used in vaccine production and cancer treatments. However, this work also includes engineering superbugs that could cause a global pandemic if they escape from the lab. While virologists argue that this research could help us prepare for future pandemics, critics believe that the risks outweigh the benefits. To minimize the risk of lab leaks, experts suggest creating international databases of leaks, near-misses, and fixes, as well as developing a robust pandemic early warning system. As students, it is important to understand the benefits and risks of scientific research and to be aware of the measures being taken to minimize the risks associated with it.
Have you ever wondered why some people are more adventurous than others? Geneticists are trying to figure out if certain genes can explain differences in behavior, like thrill-seeking, aggression, and nurturing. Research has shown that the genetics behind complex behavior is trickier than we first thought, and differences in behavior are not the result of one or a handful of genes. For example, the activity of 4,000 out of 15,000 genes in fruit flies determines how tough they will get with each other. If the genetics of behavior is that complicated in a fruit fly, imagine how complicated it would be for a human. Learning about the genetics of behavior can help us understand ourselves and others better, and it can also lead to practical applications in fields like medicine and psychology.
Want to know the secret to successful and sustainable weight loss? According to a recent study by Stanford Medicine researchers, it's all about the bacteria in your gut and the biomarkers in your body! The study found that certain gut microbiome ecologies and amounts of proteins can predict whether you will be successful at losing weight and keeping it off. So, are you ready to unlock the power of your gut and biomarkers for weight loss success?
Nick Lane's "Power, Sex, Suicide" takes us on a journey into the fascinating world of mitochondria, the tiny structures inside our cells that are vital to our existence. Lane shows how our understanding of mitochondria sheds light on how complex life evolved, why sex arose, and why we age and die. Did you know that without mitochondria, we wouldn't have cell suicide, embryonic shaping, sexes, menopause, or aging? This book is a thought-provoking exploration of the latest research in the field, and its findings are of fundamental importance to understanding life on Earth and controlling our own illnesses. Recommended for biology enthusiasts, medical students, researchers, and anyone interested in the evolution of life, Nick Lane's "Power, Sex, Suicide" is a must-read. The book sheds light on the fascinating world of mitochondria and their role in complex life, sex, aging, and degenerative diseases like cancer. It is relevant to a range of fields of study, including genetics, molecular biology, and biochemistry, and is a valuable resource for those interested in controlling their own illnesses and delaying degeneration and death. The book's exploration of mitochondrial DNA and its role in tracing human ancestry also makes it a relevant read for anyone interested in anthropology and evolutionary history.
Are you interested in exploring the fascinating world of biotechnology research? Look no further! Biotechnology research is a field of study that combines biology, chemistry, and engineering to develop new products and technologies that improve human health, agriculture, and the environment. Biotechnology research has led to some of the most exciting innovations of our time, from the development of life-saving drugs to the creation of sustainable biofuels. For example, researchers have used biotechnology to create genetically modified crops that are more resistant to pests and disease, reducing the need for harmful pesticides. Biotechnology has also played a crucial role in the development of vaccines, such as the COVID-19 vaccine, which has helped to save countless lives. At the undergraduate level, students can expect to take courses in molecular biology, genetics, biochemistry, and biostatistics. They will also have the opportunity to gain hands-on experience in the lab, conducting experiments and analyzing data. Students can choose to specialize in areas such as biomedical engineering, agricultural biotechnology, or environmental biotechnology, depending on their interests and career goals. A degree in biotechnology research can lead to a wide range of exciting careers, including biomedical researcher, genetic counselor, bioinformatics analyst, and biotech product manager. Graduates can work in a variety of industries, including pharmaceuticals, biotech startups, and government agencies. Notable employers include companies like Pfizer, Novartis, and Biogen. To succeed in this field, students should have a strong foundation in biology and chemistry, as well as excellent analytical and problem-solving skills. They should also be curious, creative, and passionate about using science to make a positive impact on the world. Ready to explore the world of biotechnology research? Start your journey today and be a part of the next generation of innovators in this exciting field!
Are you interested in science and making a difference in people's lives? A career in pharmaceutical research might be just what you're looking for! Pharmaceutical research is an exciting field that involves discovering and developing new drugs and therapies to treat and cure diseases. As a pharmaceutical researcher, you will have the opportunity to work on cutting-edge research projects that could change the lives of millions of people. For example, did you know that the development of the COVID-19 vaccines is a result of years of pharmaceutical research? You could be part of the next breakthrough in medicine! In this field, your typical duties will include conducting laboratory experiments, analyzing data, developing new drugs, and testing their safety and effectiveness. You may also specialize in a particular area, such as drug design, pharmacology, or clinical research. To become a pharmaceutical researcher, you will need to pursue a degree in a relevant field, such as chemistry, biology, or pharmacology. Popular undergraduate programs and majors include Biochemistry, Pharmaceutical Sciences, and Medicinal Chemistry. A graduate degree in pharmaceutical research is also highly desirable and may be required for some positions. Helpful personal attributes for this field include strong critical thinking skills, attention to detail, and excellent communication skills. A passion for science and a desire to make a difference in the world are also important. The job prospects for pharmaceutical researchers are promising. With the aging population and increasing demand for new drugs and therapies, the demand for skilled researchers is expected to grow. Notable and attractive potential employers in this field include pharmaceutical companies such as Pfizer, Merck, and Novartis, as well as government agencies such as the National Institutes of Health (NIH) and the Food and Drug Administration (FDA).
DNA is a molecule that holds the secrets of life within its code, and it's waiting for you to explore it! This amazing molecule determines our traits, from our physical appearance to our personalities, and it can also tell us about our ancestry, our risk of diseases, and much more. Leading academics in the field of genetics, such as James Watson and Francis Crick, made major contributions to our understanding of DNA by discovering its structure and how it stores and transfers genetic information. Watson and Crick's discovery of the double helix structure of DNA was a major turning point in the field of genetics and opened up new avenues for scientific research. In the early 1990s, the Human Genome Project was launched to map all of the genes in human DNA. This project was a huge success and has had a profound impact on the field of genetics. It allowed scientists to identify specific genes that are associated with different diseases, such as cancer, and has paved the way for new treatments and cures. One of the most fascinating things about DNA is that every person's DNA is 99.9% identical to every other person's DNA. It's the remaining 0.1% that makes each of us unique! Our DNA also contains fascinating stories about our ancestors and their migrations. For example, DNA testing can tell us where our ancestors came from and how they migrated across the world. This is known as genetic genealogy, and it's an exciting field that combines genetics and history. Another fascinating aspect of DNA is its role in evolution. Charles Darwin's theory of evolution by natural selection states that species change over time through the process of natural selection. This process occurs because certain traits that provide an advantage in survival and reproduction become more common in a population over time. DNA mutations can lead to changes in traits, and over many generations, these changes can accumulate and result in new species. By exploring the world of DNA, you will not only deepen your understanding of genetics and biology, but also gain a new appreciation for the complexities and wonders of life. So go ahead, unlock the secrets of life with the power of DNA!
Discover the secret behind Gram-negative bacteria's armor-like outer membrane! A new study led by Professor Colin Kleanthous at the University of Oxford sheds light on how bacteria like E. coli construct their outer membrane to resemble body armor, with implications for developing antibiotics.
The human body is made up of trillions of cells, with each cell originating deep within our bones. The porous nature of bones allows for large and small blood vessels to enter, with the hollow core of most bones containing soft bone marrow. This marrow is essential, containing blood stem cells that constantly divide and differentiate into red and white blood cells and platelets, sending billions of new blood cells into circulation every day. Blood cancers often begin with genetic mutations in these stem cells, which can result in malignant blood cells. For patients with advanced blood cancers, the best chance for a cure is often an allogeneic bone marrow transplant. This procedure involves extracting blood stem cells from a donor and infusing them into the patient's body, leading to the regeneration of healthy blood cells. While bone marrow transplants come with risks, including graft-versus-host disease, it is crucial to find the best match possible for the recipient. Donor registries offer hope to those without a matched family member. Learning about the importance of bone marrow and stem cells can inspire students to explore the fascinating world of human biology and potentially make a difference in someone's life through donation.
Discover the scientist who uncovered the savory fifth taste, umami, and how it's related to the infamous MSG. Learn how umami has become a buzzword in the culinary world, inspiring chefs to create meaty flavors in meatless dishes.
Activities