Article
More like this
Beauty is an essential human experience that has been with us for millions of years. It is intangible and exists only in our heads as a pleasant feeling. However, it goes beyond personal preferences and is deeply hardwired into us. Our sense of beauty probably evolved from pattern recognition, which helped our ancestors evaluate their environment more easily and react quickly to danger. Symmetry, fractal patterns, and the golden ratio are all rooted in nature and have become part of our biology because they helped our ancestors survive. While we have a hard time pinning down what beauty is or what it's based on, we somehow recognize it when we see it. Surroundings that are aesthetically pleasing to us can improve our well-being, behavior, and cognitive function. Therefore, learning more about beauty and its impact on our lives can benefit us both intellectually and practically.
Have you ever wondered why we crave certain foods more than others? It turns out that our brain's reward system is responsible for this. The orbital frontal cortex, a part of the brain that responds to different sensations and nutrients, is especially developed in humans and primates. This part of the brain is responsible for our cravings and delights in fat and sugar. However, having information about the food can make a big difference. We can use our knowledge of what is happening in our brains to design foods that are low in calories and still attractive, but healthy. Understanding how our reward neurons plot to get what they want can help us be aware of times that we tend to make poor choices. In the end, we are not fully at the mercy of our reward neurons. We can use our understanding to help design healthy foods and make healthy choices. By learning more about the science behind our food choices, we can make better decisions for our health and wellbeing.
Did you know that bioreactor technology is revolutionizing the way we grow nutritious plants? Bioreactors are closed systems that use microorganisms, plant cells, or animal cells to produce a wide range of products, including food, drugs, and biofuels. With bioreactors, we can grow plants in a controlled environment, without the use of pesticides or fertilizers, and harvest them year-round. One of the most exciting applications of bioreactor technology is the cultivation of superfoods. These are foods that are nutrient-dense and have a host of health benefits, such as kale, spinach, and broccoli. By growing these plants in bioreactors, we can increase their nutritional content and make them more widely available. One example of this is how researchers at Flinders University's Centre for Marine Bioproducts Development are using bioreactors to cultivate marine microalgae, which can be turned via advanced cultivation strategies into various proteins. Cultivating microalgae is more eco-friendly than rearing animals, and may be a way to reduce the need for meat proteins, thus helping to save the environment. Another example is the use of plant cell cultures in bioreactors to produce plant-based meat alternatives. Mark Post, a pharmacologist and professor at Maastricht University in the Netherlands, has developed a process for growing "cultured meat", where animal cells are cultivated in vitro. This technology could revolutionize the meat industry, reducing the environmental impact of animal agriculture and improving animal welfare. But bioreactor technology isn't just for growing food. It's also being used to produce drugs, such as insulin, and to clean up pollution. In fact, another crucial form of bioreactor technology is bioremediation, which is the use of microorganisms to break down environmental contaminants. The future of bioreactor technology is exciting! Aside from its current uses, ongoing research probes at the possibility of bioreactors being used in cell therapy - growing healthy cells to replace diseased or damaged ones in patients. The possibilities are vast, so let's go ahead and dive into the exciting world of bioreactor technology!
Are you a fan of miso and natto? A new study from Japan, published by The BMJ, has found that a higher intake of fermented soy products is associated with a lower risk of death. The study investigated the association between different types of soy products and death from any cause, cancer, cardiovascular disease, respiratory disease, and injury. The researchers found that a higher intake of fermented soy (natto and miso) was associated with a significantly lower (10%) risk of all-cause mortality. Read the article to find out more about the potential health benefits of fermented soy products.
In just a few thousand years, northern Europeans evolved to digest milk, a feat that was once impossible for adult humans. Scientists now believe that exceptional stressors like famines and pathogens may have driven this genetic change, making the ability to digest milk extra valuable. This study, published in Nature and led by experts from the University of Bristol and University College London, sheds light on the evolution of lactose tolerance and rewrites the textbooks on why drinking milk was an advantage.
Food is energy for the body, and the average number of calories in fat, protein, and carbohydrates is still used as an important marker for nutrition today. However, biologist Rob Dunn explains that there is no such thing as an average food or person. How many calories we extract from food depends on the biology of the species we are eating, how we cook and process our food, and even on the different bacterial communities in different people's guts. Standard calorie counts don't take any of these factors into consideration, resulting in numbers that are slightly inaccurate, at best, and sometimes rather misleading. Digestion turns out to be such a messy affair that we'll probably never have precise calorie counts for all the different foods we'd like to eat and prepare in so many different ways. However, learning about the biology of food and digestion can help us make better choices and understand our bodies better.
Have you ever wondered why some foods taste savory, rich, and satisfying? Well, the answer lies in the fifth taste sensation: Umami. The discovery of Umami, which means "pleasant savory taste" in Japanese, revolutionized the world of cooking and seasoning. Umami was first identified by the Japanese chemist Kikunae Ikeda in 1908. He identified the presence of glutamates in seaweed broth as the source of its savory flavor. Since then, the role of Umami in cooking has been widely recognized, and it has become a crucial ingredient in many dishes worldwide. Umami acts as a flavor enhancer, balancing the taste of sweet, sour, bitter, and salty in food. It's the secret behind the deliciousness of dishes like tomato sauce, Parmesan cheese, and soy sauce. Not only does it enhance the taste of food, but it also makes it more satisfying and filling, making it a crucial component of healthy and balanced meals. Leading academics in the field, such as George Charalambous and Gary Beauchamp, have conducted extensive research on the science of umami and its effects on the human palate. They have found that the combination of umami with other tastes can create a synergistic effect, increasing the overall pleasure of the meal.
Discover the scientist who uncovered the savory fifth taste, umami, and how it's related to the infamous MSG. Learn how umami has become a buzzword in the culinary world, inspiring chefs to create meaty flavors in meatless dishes.
Minimalism is a philosophy that has roots and branches in many places. It's a reaction to the increasingly busy and loud world around us, and it can take many forms, from architecture to music. Minimalism means owning few possessions, living in largely empty space, and even eating minimalist food. It's not just about decluttering, but knowing what to keep. Minimalist buildings are simple and full of light and space. Minimalist music features repetition, simple patterns, and phase shifting, and can be profoundly moving and deeply emotional. Learning about minimalism can help students identify what truly matters to them and help them declutter their lives, both physically and mentally. It can also inspire them to create their own minimalist art, music, or architecture.
Are you curious about how your diet can affect your health? A recent study from the Massachusetts Institute of Technology (MIT) shows that the stem cells in your intestine, which are responsible for replacing the lining of your gut, are heavily influenced by what you eat. By exploring how different diets and environmental conditions affect intestinal stem cells, researchers hope to develop new ways to improve gastrointestinal health and prevent diseases, such as cancer. Read on to discover how diet can impact your health and learn about the exciting research being conducted at MIT.
Do you ever wonder why orange juice tastes so bad after brushing your teeth? It turns out that our taste buds, which are made up of taste receptor cells, are responsible for identifying different tastes like sweet, bitter, and savory. Toothpaste contains Sodium Lauryl Sulphate (SLS), which creates foam while brushing and temporarily gets rid of the molecules that block our bitter receptors. This makes the receptor much more sensitive to bitter flavors, causing that awful taste. However, taste isn't just affected by our receptors. Temperature, texture, and smell can change what we sense too. Learning about the science of taste can help you understand why some foods taste the way they do and how to enhance your dining experience. So, next time you have OJ after brushing, try plugging your nose or go for a coffee or Bloody Mary instead.
A new study shows that supertasters, who perceive flavors more intensely, consume more salt in their diet than nontasters. Chefs' taste buds may be prone to over-salting, but how much is too much? Explore the genetics of taste and its impact on health.
The world of science is constantly evolving, and with it comes new discoveries that can benefit humanity. However, there are also risks associated with scientific research, particularly in the field of biotechnology. Gain of function work involves manipulating the DNA of microorganisms to give them new abilities, which can be used in vaccine production and cancer treatments. However, this work also includes engineering superbugs that could cause a global pandemic if they escape from the lab. While virologists argue that this research could help us prepare for future pandemics, critics believe that the risks outweigh the benefits. To minimize the risk of lab leaks, experts suggest creating international databases of leaks, near-misses, and fixes, as well as developing a robust pandemic early warning system. As students, it is important to understand the benefits and risks of scientific research and to be aware of the measures being taken to minimize the risks associated with it.
Ancient Egyptian tombs reveal pots of honey, thousands of years old and still preserved. What makes honey such a special food? The answer lies in its chemical makeup and the alchemy of bees. Honey's longevity and acidic properties lend it medicinal qualities, making it a natural bandage and a barrier against infection for wounds. Discover the magic of honey and its perfect balance of hygroscopic and antimicrobial properties.
Silphion, a golden-flowered plant once prized by the Greeks and Romans for its medicinal and culinary uses, disappeared from the ancient world. But a professor in Turkey may have rediscovered the last holdouts of the plant, which was once valued as highly as gold. Ferula drudeana, a plant with similar characteristics, may be the modern-day version of silphion, with potential for medical breakthroughs. Explore the fascinating story of a plant that was the first recorded extinction and the search for its rediscovery.
Learning about the chemistry of onions may not seem like the most exciting academic topic, but it can help you understand how things work in the world around you. When you chop an onion, you're changing its chemistry and releasing a gas that causes your eyes to water. You can slow down the onion's enzymes by storing it in the fridge or boiling it briefly, or you can wear goggles or sunglasses while cutting it. Scientists are even working on creating tear-free onions through genetic modification and traditional plant breeding. Learning about the chemistry of onions can help you appreciate the complexities of the natural world and give you practical skills for your everyday life.
Cells are the fundamental units of life, driven by the forces of the universe, and are impossible machines. They are biological robots that follow their programming, which has evolved over billions of years. Your cells are mostly filled with water molecules and proteins, which are the dead things that make life happen. Cells speak the language of life, which is made up of proteins that are formed from amino acids. Amino acids are the alphabet of the language of life, and proteins are the words that form sentences called biological pathways. The language of life is complex, and mindless cells speak it through DNA, which contains instructions, genes, and building manuals for all the proteins your cells need to function. Understanding the language of life can help you appreciate the amazing complexity of cells and their role in keeping you alive.
Umami, the savory essence found in a variety of foods, was only recently recognized as the fifth fundamental human taste. Scientists have now discovered how glutamate, the chemical responsible for umami taste, activates nerves on the tongue and how inosinate and guanylate can enhance its flavor. Learn how this "Venus flytrap" mechanism works and why a good Japanese broth contains both seaweed and dried fish flakes. Discover the truth behind MSG and why it's not as bad as some may think.
Scientists sequence Beethoven's genome from locks of hair, revealing new insights into his health and ancestry. The study, led by Cambridge University and other institutions, uncovers genetic risk factors for liver disease and an infection with Hepatitis B virus. Beethoven's hearing loss remains a mystery, but his genomic data rules out coeliac disease and lactose intolerance as potential causes. The study sheds light on the composer's health problems, including chronic gastrointestinal complaints and a severe liver disease that likely contributed to his death at age 56.
The story of Odysseus and Circe from Homer's "Odyssey" has long been dismissed as pure imagination. However, recent scientific research has found that the mention of herbs and drugs throughout the passage may suggest that the myths were fictional expressions of real experiences. The passage describes the effects of the Jimson weed and snowdrop plants, which were used by villagers to treat polio and Alzheimer's. The story also highlights the importance of local plants in ancient times and how they were used to great effect. As we continue to learn more about the world around us, we may uncover more hidden knowledge within the myths and legends of ages passed. By exploring academic topics such as ancient literature and science, students can learn about the connections between the past and present, as well as the benefits of self-directed learning and critical thinking.
Activities
People and Organizations